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Executive Summary 

Significant investments have been made by the Bonneville Power Administration (BPA) and 

numerous partner organizations to monitor anadromous fish populations and restore habitats 

within the Columbia River Basin in previous decades. As a result, juvenile and adult fish counts 

now exist at hundreds to thousands of sites throughout the region. These counts are valuable 

for answering status and trend questions that originally motivated collection of the datasets, but 

they can also be integrated within a statistical modeling framework, at a relatively low cost, to 

better understand habitat constraints and make predictions of fish abundance and distributions 

at regional scales. 

The Fish Data Analysis Tool (FDAT) is designed to incentivize the development of consistent, 

centralized databases and automate the process of network-scale modeling of fish density and 

abundance datasets. FDAT includes several useful features, including the ability to:   

1. Visualize existing fish density data collected by multiple organizations in space and time;  

2. Import fish survey data uploaded by users, who interactively quality assurance quality 

control (QA/QC) the spatial location of survey sites;  

3. Automatically undertake the extensive spatial-data processing steps needed to fit spatial 

statistical stream-network models;  

4. Fit spatial statistical stream-network models and generate predictions at multiple 

management-relevant scales (e.g., site, population, and/or catchment), with associated 

estimates of uncertainty; 

5. View prediction maps of fish densities and total abundances throughout full stream 

networks and subsets of the network;  

6. View interpolated maps of the uncertainties in fish densities that could guide subsequent 

data collection efforts to locations that would most efficiently reduce uncertainty; and  

7. Download the pre-processed spatial data used to fit the models, as well as the model 

predictions and a report documenting the methods used to generate them.  

In addition, FDAT provides the functionality to monitor data upload activity by registered users, 

which the BPA could tie to contractual payment milestones. 

The aim of this project was to outline the functional requirements and provide a detailed 

software architecture design for a web-based FDAT, used to apply spatial statistical stream-

network models in an automated, computationally efficient, and consistent manner to 

anadromous fish datasets across the whole-of-the Columbia River Basin. While only one 

architecture design is provided in Section 5, we review a range of technical software including 

cloud-based hosting solutions, as well as open-source and proprietary software that could be 
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used for particular FDAT system components. We discuss the pros and cons of each software 

choice and make recommendations for future development and implementation.  

Spatial Data Processing 

Numerous spatial data-processing steps take place behind the scenes in FDAT to ensure the 

field data contributed by users is in a format suitable for spatial stream-network modeling. In the 

prototype FDAT developed in Phase 1 of the project (FY18), the spatial data processing, 

modeling and prediction were undertaken in two steps using both proprietary (ESRI ArcGIS and 

Microsoft Access database) and open-source software (R Statistical Software). We created the 

osSTARS package for R in this project, which replicates the core spatial-data processing steps 

needed to support the FDAT. This alleviates reliance on proprietary software subscriptions, and 

reduces future time and costs associated with system maintenance. As a result, all of the spatial 

data processing, statistical modeling and prediction takes place in R, creating a seamless data-

analysis pipeline within one open-source software product.  

Mapping Library and Provider 

We considered five open-source (CesiumJS, Mapbox GL JS, Leaflet, and OpenLayers) and 

proprietary (ArcGIS API JavaScript) mapping libraries to support the web-based interactive 

mapping functionality of FDAT. After careful consideration, we recommend CesiumJS and/or 

MapBox GL JS mapping libraries because they are completely customizable and perform 

particularly well for visualizing, analyzing and sharing large spatial datasets. Both are freely 

available, open-source code libraries that have been in development for many years and have 

large, active online communities. 

We also reviewed four popular mapping providers, three of which were proprietary (Cesium ion, 

ArcGIS, and Mapbox) and the other open-source (OpenStreetMap) software. We recommend 

using Mapbox, a proprietary map provider because of the large number of basemaps to choose 

from, as well as a reasonable, usage driven pricing scale, with a free quota. This means there 

will be no map provider costs incurred during the FDAT development, and potentially throughout 

the life of FDAT.  

Database 

We recommend the open-source database software PostGreSQL because of its ability to 

handle massive datasets, support for geospatial queries, its robust and rapid data-storage 

mechanism, and the ability to import and export common spatial data formats. We believe that 

this software is the best option and that there are no benefits to be gained from using a 

proprietary software product.  
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Hosting Environment: Cloud-base versus on-premises hosting 

The most important decision concerning the FDAT architecture is whether to host it on the BPA 

network (i.e., on-premises hosting) or on a cloud service provider such as Amazon Web 

Services (AWS), Google Cloud, or Microsoft Azure. We recommend cloud-based hosting over 

on-premises hosting because: 

• More cost-effective; 

• Allows for rapid scalability and on-demand computing; 

• No upfront hardware costs; 

• Cloud vendor maintains hardware and software updates and patches; 

• Automated backup and recovery; and 

• Cloud vendor handles security. 

Cloud-based hosting cost estimates on Amazon Web Services 

The cost of cloud-based hosting is affected by the: 

● Number of users accessing data (e.g., downloading, clicking on map features to 

generate data summaries, and uploading data); 

● Frequency of spatial data processing and/or modeling (e.g., daily 

● versus annually); and  

● Changes in data storage needs, which could occur if there were large increases in 

observations or predictions, or a new variable was added (e.g., temperature).  
 

Based on the assumptions outlined in Section 3, the cost estimates for cloud-based hosting are: 

• Expected use: $4995 per year, or $14,985 over three years. 

• Exceeds usage expectations or modeling occurs more than 5 times per year: $8095 per 

year or $24,285 over three years. 

• Significantly exceeds usage expectations and modeling occurs on demand: $8100-

$10,000 per year and $24,000-30,000 over three years. 

These costs are provided only as a guide for discussion, rather than a quote, and are accurate 

as of April, 2020.  

BPA on-premises hosting cost estimates 

We have provided on-premises hosting costs, but note that they are difficult to estimate without 

detailed knowledge of hardware purchasing providers, staff costs and the existing network 

infrastructure. Assuming that hardware is replaced every three years and there are no hardware 

failures, the cost estimate for on-premises hosting is: 

● Expected usage: $21,900 over three years, with $13,700 in the first year, and an 

additional $4,100 in the second and third years for system maintenance. 
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● Exceeds, or significantly exceeds usage expectations and modeling occurring on 

demand: $43,800 over three years, with $27,400 in the first year, and an additional 

$8,200 per year in the second and third years for system maintenance. 

 

While the cost of implementing, hosting and maintaining FDAT is not insignificant, we believe 

that it provides long-term value for money. Enormous field sampling and habitat restoration 

efforts have occurred in the Columbia River Basin, but existing data are often housed within 

different organizations and/or stored in disparate formats, making data integration at regional 

scales challenging. Analyzing data from multiple sources can also be a technical barrier for 

users who would benefit from basin-scale assessments, given the advanced skills in aquatic 

biology and ecology, spatial science, and computational modeling and statistics needed to fit 

spatial statistical stream-network models, and other comparable models. FDAT addresses many 

of these needs.  

• It is designed to incentivize the creation, standardization, use, and maintenance of a 

central fisheries database across multiple agencies, which is freely available to the 

public and continually updated each year.  

• It automates the process of network-scale modeling of fish density and abundance 

datasets collected by multiple organizations.  

• The predictive model outputs provide new information about current status and future 

trends mined from existing datasets, which are also freely available for download.  

• Analysis methods are well documented and reproducible, to promote transparency and 

provide users with the confidence in the results.  

While FDAT has been designed for fish density and abundance data, the software architecture 

was designed to be cost-effective, secure, scalable and robust as FDAT evolves. Thus, it can 

also be used to integrate and model other stream variables such as temperature, with relatively 

minor modifications. 
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1 Introduction 

Significant investments have been made by the Bonneville Power Administration (BPA) and 

numerous partner agencies to monitor anadromous fish populations and restore habitats within 

the Columbia River Basin in previous decades. Spatially indexed juvenile salmon and 

steelhead/rainbow trout counts now exist at hundreds to thousands of sites throughout the 

region. These counts are valuable for answering status and trend questions that originally 

motivated collection of the datasets, but they can also be repurposed at low cost for use with 

other spatial datasets related to stream environments (e.g., slope, elevation, land use) and 

spatial stream-network models (Ver Hoef et al. 2006; Ver Hoef and Peterson 2010) to 

understand habitat constraints and make predictions of fish abundance and distributions 

throughout full river networks (Isaak et al. 2017). Predicted abundances can be integrated over 

the full network or subdomains within the network to obtain population estimates at a variety of 

spatial and/or temporal scales that are most relevant to conservation and investment planning. 

Moreover, spatial statistical stream-network models differ from previous models in that they do 

not require spatially independent samples, but instead benefit from some degree of non-

independence among samples in close proximity. This flexibility allows the models to make use 

of data from multiple sources and incentivizes the development of consistent, centralized 

databases because the models become increasingly accurate as the amount of data and site 

clustering in modeled datasets increase. 

In Phase 1 of the Analysis of Spatial Stream Networks for Salmonids project (BPA contracts 

#77234, 77246, and 46273 REL 13), we developed an automated web-based prototype Fish 

Data Analysis Tool (FDAT) to demonstrate the process of network-scale modeling of fish 

density datasets (Peterson et al. 2018). The prototype FDAT was based on data from a small 

study area in northeastern Oregon and included several useful features:  

1. Visualize existing fish density data collected by multiple organizations in space and time 

(Figure 1a);  

2. Import fish survey data uploaded by users, who interactively QA/QC the spatial location 

of survey sites (Figure 1b);  

3. Automatically undertake the spatial-data processing steps needed to fit spatial statistical 

stream-network models (Figure 1c);  

4. Fit spatial statistical stream-network models and generate predictions at multiple 

management-relevant scales (e.g., site, population, and/or catchment), with associated 

estimates of uncertainty (Figure 1d); 

5. View prediction maps of fish densities and total abundances throughout full stream 

networks and subsets of the network (Figure 1a);  

6. View interpolated maps of the uncertainties in fish densities that could guide subsequent 

data collection efforts to locations that would most efficiently reduce overall uncertainty 

(Figure 1a); and  
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7. Download the pre-processed spatial data used to fit the models, as well as the model 

predictions and a report documenting the methods used to generate them (Figure 1a).  

 

 

 

 

Figure 1.  Functional overview of the four main components of FDAT, including (a) Visualization, 

Exploration, & Download, (b) Upload Observations, (c) Spatial Data Processing, and (d) 

Modeling and Prediction. 

 

While the Phase 1 prototype enabled us to demonstrate the feasibility and advantages of an 

automated analysis approach, it was not optimally designed for analyzing and visualizing large 

sets of field observations and predictions at the Columbia River Basin scale. In addition, the 

prototype FDAT made use of proprietary software, which would increase the cost of maintaining 

FDAT in the future.   

Here we provide a software architecture option for a web-based FDAT, used to apply spatial 

statistical stream-network models in an automated, computationally efficient, and consistent 

manner to anadromous fish datasets across the whole of the Columbia River Basin; with the 

ultimate goal of displaying quantitative field results and modeled abundance and distribution 

information to guide salmonid resource management and habitat restoration, as well as 

protection actions. We review a range of technical software including cloud-based solutions, as 

well as open-source and proprietary software. We discuss the pros and cons of each approach 

and make recommendations for future development and implementation.  
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2 Recommendations 

The FDAT is an internet-accessible web application designed to ingest, process, and model 

field data (i.e., observations) collected in river systems (Figure 1). We provide a detailed 

description of the proposed FDAT system architecture in Section 5. All efforts have been made 

to consider the most cost-effective, secure, scalable and robust software architecture, while 

future-proofing the design so that it can be applied to other variables (e.g., temperature) with 

minor modifications. However, there are a number of decisions that must be made regarding the 

application hosting environment and the use of proprietary versus open-source software. We 

provide recommendations about those choices below, followed by cost estimates for 

implementation (Section 3). 

 

2.1 Application Environment 

The most important decision the BPA must make concerning the FDAT architecture is whether 

to host it on the BPA network (i.e., on-premises hosting) or on a cloud service provider such as 

Amazon Web Services (AWS), Google Cloud, or Microsoft Azure. There are pros and cons to 

both approaches (Figure 2; Leoni 2019), but we recommend cloud hosting over on-premises 

hosting for a number of reasons.  

A cloud hosting approach provides a single point of security management, government 

approved security levels, and highly granular internal security roles and restrictions. More 

importantly, it provides on-demand processing and scalability, as the demand and scope of 

FDAT evolves (Leoni 2019). For example, the spatial data processing, modeling, and prediction 

functions in FDAT (Figure 1) are computationally intensive and require significant hardware 

resources (Section 3) to ensure processes finish in a reasonable amount of time. However, 

these processes only run intermittently (e.g., daily, monthly, seasonally, or annually) and so the 

server sits idle most of the time. In a cloud computing environment, there are no up front 

hardware costs (Figure 2). The user only pays for the computation time on the server and 

computational resources can be easily adjusted up or down depending on the demand and 

number of users. All servers, databases and underlying file resources are automatically backed 

up, and the entire system can be restored or redeployed from backup. In addition, hardware and 

software upgrades are handled by the cloud vendor. However, it is worth noting that cloud 

hosting costs can escalate if the application is not properly designed and managed (Leoni 

2019).  

An on-premises deployment is much less scalable and agile than cloud hosted applications, but 

the user has full control over hardware and security (Figure 2; Leoni 2019). For example, 

organizations pay the full purchase price for servers deployed on-premises up front, regardless 

of how often they are used. Servers must also be updated every 3 to 5 years, with additional 

hardware purchases required to scale up computation, and no option to downscale 
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computational resources. Another important cost to consider is BPA information technology (IT) 

staff time required for hardware purchases, software updates, ongoing operating, and 

maintenance. However, users may choose to host applications on-premises when data are 

particularly sensitive, or there are specific security and compliance requirements because they 

have full control over security and data access. We do not believe that this is the case for FDAT, 

which is designed to promote data sharing and transparency between multiple users and 

organizations. Even if FDAT data were deemed sensitive, there are cloud hosting options, such 

as AWS GovCloud, which are specifically designed to comply with the most stringent US 

government security and compliance requirements (Amazon Web Services 2020a). 

 

 

Figure 2. Pros and cons of FDAT cloud-based hosting versus hosting on the Bonneville Power 

Administration (BPA) network (On-Premises).  

 

In recent years, many large web-based systems have been migrated to cloud-based services 

(Amazon Web Services 2020b); in part because a well-planned and managed cloud hosting 

solution provides a more cost effective and financially sustainable outcome than traditional on-

premises hosting. While any cloud hosting provider could be used for FDAT, we recommend 

AWS because it is the most mature cloud vendor and holds the majority of the market share 
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globally. In addition, our team’s personal experience building internet-accessible web 

applications on AWS, underpinned by large database instances and on-demand computing to 

support modeling and spatial visualizations (e.g., Virtual Reef Diver 2020; ILAQH 2020), 

confirms that this cloud vendor is a suitable host for FDAT.  

 

2.2 Data Exchange Standard 

The BPA and their partner organizations are currently in the process of developing a data 

exchange standard (DES) to make data sharing between organizations more efficient. A 

consistent data format is especially important in FDAT, where the aim is to automatically ingest, 

analyze, and visualize data contributed by multiple organizations throughout the Columbia River 

Basin. We received a copy of the draft DES in Excel spreadsheet format from the BPA 

(Appendix 1) and have used it to design the data ingestion process in FDAT. However, this 

portion of the design can easily be altered, as long as partners adhere to a common format.  

Two clear advantages to using a DES in Excel spreadsheet format are that the software is 

accessible, and the format familiar to most users. However, there are numerous issues related 

to the use of spreadsheets. Users often introduce errors related to data integrity and 

consistency in spreadsheets, where data of different formats (e.g., character, date, or number) 

can be accidentally entered into a single column. When formulas embedded in spreadsheets 

have errors, even small errors can have significant financial consequences for organizations 

and policy implications (Soto 2019). Recent evidence also suggests that unanticipated 

automatic formatting in Excel (e.g., shortening column names or re-formatting data in cells) has 

introduced errors to approximately 20% of genetic studies published in top scientific journals 

(Ziemann et al. 2016). In addition, the use of spreadsheets may also inadvertently increase the 

time required for data entry. Although different partner organizations often collect similar 

information in field studies (e.g., species, age class, count, or area sampled), they tend to have 

an existing data entry format they prefer. As a result, some partners will continue to record data 

in their own preferred format before re-entering the data in the DES spreadsheet; thus, 

increasing the amount of time needed for data entry and increasing the probability of data entry 

errors.  

There are alternative data formats that could be used to address these issues. For example, a 

web page could be created that provides the inputs present in the Excel spreadsheet, with drop 

down menus for those fields with a set number of options. Validation could be done on the fly, 

so that users can instantly see if a field has been filled incorrectly, and also when the user 

attempts to submit the web form. Submitted data can then be automatically stored in a 

database, which alleviates the need to re-enter data in multiple formats, assuming the data are 

valid. Such a solution could be embedded in an app that initially stores the data in a local 

database and then submits it to the BPA servers when there is an internet connection present. 
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A form embedded in a web page or phone app (or both) could also be designed to be user 

friendly for mobile users who lack a physical keyboard and mouse.  

 

2.3 Database Instance 

We reviewed a number of open source and proprietary database providers (Appendix 2), any of 

which could meet the needs of FDAT. However, we recommend the open source software 

PostGreSQL because of its ability to handle massive datasets (Mapbox 2015), support for 

geospatial queries (Planet 2012), its robust and rapid data-storage mechanism (Citus Data 

2017), and the ability to import and export common spatial data formats such as shapefiles, 

GeoJSON and scalable vector graphics (SVG; Planet 2012). This choice is also supported by 

our own experience developing similar data-driven environmental sensing applications such as 

the KOALA Air Quality monitoring project (ILAQH 2020). PostGreSQL has efficiently handled 

more than 9 million rows of data to date and successfully provides geospatial query support 

through the PostGIS extension (PostGIS 2020). We believe that PostGreSQL is more suitable 

than the other open source and proprietary software options we considered and as such, we 

have not provided a recommendation for proprietary database software.  

 

2.4 Mapping Library and Provider 

There are two components to consider when implementing the FDAT visualization component 

(Figure 1d). One is the mapping library, which is the source code library used to render the 

mapping functionality in the web browser. The mapping library connects to an underlying 

mapping provider, which supplies basemaps such as satellite imagery, a simple street map, or a 

customized topographic map. We reviewed a variety of open source and proprietary map 

libraries and providers and compared their pricing, performance and overall suitability for use in 

FDAT (Appendix 3). 

We considered five open-source (CesiumJS, Mapbox GL JS, Leaflet, and OpenLayers) and 

proprietary (ArcGIS API JavaScript) mapping libraries for use in FDAT (Appendix 3, Table 

A3.1). OpenLayers and Leaflet were deemed unsuitable due to performance issues with large 

datasets (Netek et al. 2019). In contrast, ArcGIS API for JavaScript (ESRI 2020a) is an 

advanced web mapping application fully capable of visualizing and analyzing massive datasets 

online (Ekenes 2020). It provides cartography tools and widgets to support custom mapping and 

GIS analyses (Powell et al. 2020), which makes it relatively straightforward for most users to 

build interactive maps. This is a substantially different approach than other mapping libraries 

such as CesiumJS (Cesium 2020a), which is designed for use by developers who have the 

technical skills needed to customize every aspect of the map (Stähli 2017; Stepnov 2019). This 

makes it difficult to switch from ArcGIS API for JavaScript to other mapping libraries. In addition, 

it is proprietary software and thus, adds to the maintenance costs (Table A3.1). After careful 
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consideration, we recommend CesiumJS (Cesium 2020a) and/or MapBox GL JS (Mapbox 

2020a) mapping libraries because they are completely customizable and perform particularly 

well for visualizing, analyzing and sharing large spatial datasets in interactive web-based maps 

(e.g., Mapbox 2013; Seeger 2018). Both are freely available, open-source code libraries that 

have been in development for many years and have large, active online communities. While 

CesiumJS and MapBox GL JS are both widely used, Mapbox GL JS is by far the most popular 

library (Potter 2020). Note that, both CesiumJS and Mapbox GL JS were used in FDAT Phase 1 

(Peterson et al. 2018), with CesiumJS used for the mapping interface and Mapbox GL JS for the 

site snapping interface and functionality (Section 4.3.2). In addition, we have used CesiumJS 

and Mapbox GL JS to develop other large-scale, web-based mapping applications such as 

Virtual Reef Diver (2020), the RAISE toolkit (QUT Design Lab 2020) and the Queensland Land 

Change tool (McLaughlin et al. 2019; Woodley et al. 2019) and in our experience they perform 

well.  

We reviewed four popular mapping providers, three of which were proprietary (Cesium ion, 

ArcGIS, and Mapbox) and the other open-source (OpenStreetMap) (Appendix 3, Table A3.2). 

Although OpenStreetMap (OpenStreetMap Contributors 2020) is free to use, it does not provide 

satellite imagery, which is an appealing basemap option in rural and remote areas. Cesium ion 

(Cesium 2020b) could also be used, but it is primarily designed for 3D data streaming services 

rather than 2D mapping, and so much of the functionality would not apply to FDAT. A wide 

range of ESRI basemaps are provided with the ArcGIS API JavaScript Builders License (Table 

A3.2), but the subscription price is fixed at $125 per month (ESRI 2020b). Instead, we 

recommend the MapBox provider service. There are a large number of basemaps to choose 

from including satellite imagery, terrain maps and street maps (Mapbox 2020b) and it has a 

reasonable, usage driven pricing scale, with a free quota (Mapbox 2020c). This means there will 

be no provider costs during the FDAT development phase, and potentially throughout the life of 

FDAT (Appendix 3).  

 

3 Cost Analysis 

In this section we outline the minimal requirements and cost of FDAT, based on our 

understanding of the estimated storage, growth and use of the application. In the event the 

application is more widely used, or grows in scope to include areas or variables, the costs will 

increase accordingly. The costs are accurate as of April 2020, but also stress that they are 

provided only as a guide for discussion, rather than a quote.  
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3.1 Assumptions 

Several assumptions about the frequency of use, scale of the underlying datasets, and the data 

access by public users underpin the FDAT cost analysis and are described in more detail below. 

 

3.1.1 Data 

The spatial extent of FDAT Phase 3 includes at a minimum, the entire Columbia River Basin. 

There are approximately 6500 fish observations available in FDAT Phase 2 and we expect there 

to be another 6000 existing observations in Phase 3, when the extent includes the Interior of the 

Columbia River Basin. Prediction sites represent discrete point locations on the stream where 

field sampling has not occurred and thus, predictions will be made. The total number of 

prediction sites is determined by the number of species, age classes, years, suitable habitat and 

climate scenarios, as well as the spacing between prediction sites on the stream. In FDAT 

Phase 2, predictions are set at 250 meter intervals and there two species (steelhead/rainbow 

trout and Chinook salmon). At present, there are approximately 77,000 steelhead/rainbow trout 

and 39,000 Chinook salmon prediction sites and we expect these numbers to double in Phase 

3. Therefore, we based our resource requirements and the architectural requirements for the 

application design on the following estimates for spatial dataset file sizes and number of spatial 

features.  

● Stream network file size: 78MB 

● Number of prediction point locations: 113,000 

● Prediction points file size: 156MB 

● Number of Chinook salmon observation locations: 13-15,000 

● Number of steelhead/rainbow trout observation locations: 14-17,000 

 

We expect that an additional 500-700 observations will be uploaded to the FDAT system each 

year for both steelhead/rainbow trout and Chinook salmon. In addition, predictions will be made 

for each year at the point, population, and catchment scale, which are stored in a database 

instance and as .csv files for download by users. 

  

3.1.2 Modeling Frequency 

The FDAT is designed to automatically fit spatial statistical stream-network models to user 

uploaded data at set intervals determined by the BPA. While this could occur at any time (e.g., 

daily, monthly seasonally, or annually), we have assumed that it will happen once per year.  

Thus, the cost estimates for the FDAT architecture assume a 5% total usage time for the server 

used for modeling and prediction (i.e., RScript Server; Section 5.1.2). This should provide ample 
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time for annual modeling, as well as occasional on-demand modeling desired by BPA partners. 

If there is a requirement for more frequent predictive modeling, the on-demand costs for the 

RScript Server would also increase accordingly. 

 

3.1.3 FDAT Users 

We have assumed that there will be less than 50 BPA administrators and registered users 

uploading data to FDAT in total, with fewer than 10 uploading data simultaneously at peak 

times. The other consideration is the public users, who we have less ability to predict. We 

assume that as awareness of FDAT grows, the number of users will increase over time. While 

we considered on-demand scalability, redundancy, and system performance in the design, we 

have assumed there will be no more than 1000 unique public users per month. This estimate is 

based on the NorWeST website1, which has approximately 600 visitors per month (D. Isaak, 

personal communication). 

 

3.1.4 Domain Name and SSL Certificate 

We suggest that the BPA provide the domain name for FDAT and register it through a provider 

of their choice, to ensure that there are no future issues with ongoing registration costs or loss 

of domain registrar contact information. Domain name costs are typically in the order of $10 per 

year. However, the choice of hosting environment will affect this cost. For example, the SSL 

certificate could be provided for free as part of the AWS cloud computing solution, or supplied 

by the BPA through a SSL certificate provider at their own cost. 

 

3.2 Cloud Computing  

For the purposes of this proposed architecture, we have focused on the cloud computing 

provider AWS, but note that comparable services are offered through Google Cloud Compute 

and Microsoft Azure; although they use different naming conventions and there are 

implementation details specific to each provider. The following hardware specifications have 

been identified as suitable for the FDAT system as allowing reasonable operation under the 

estimated user load, while balancing lower costs with reasonable redundancy and failover 

systems. 

 

 
1 NorWeST website: https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html 

https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html


 

19 
 

3.2.1 Specifications 

Web Server  

AWS ‘t3.large’ Hardware Specifications 

● 2 x vCPUs 

● 8GB RAM 

● 5GBps network burst speed 

● Elastic load balancer up to 2780 MBps 

● 2 x 30GB SSD storage 

 

R Script Server 

AWS ‘m5.2xlarge’ Hardware Specifications 

● 5% utility / uptime (on demand) 

● 8 x vCPUs 

● 32GB RAM 

● 10GBps network burst speed 

● Elastic load balancer up to 4750 MBps 

● 2 x 30GB SSD storage 

 

File Storage  

AWS utilizes a highly available and redundant storage framework called S3 storage. The 

nomenclature for a file folder is known as a ‘bucket’, which operates in a similar manner to a 

normal file folder. The S3 bucket can replicate files to multiple regional servers to improve 

delivery speed and reduce latency. 
 

S3 File bucket allocation  

● 10GB storage 

● 100,000 PUT/COPY/POST/LIST Requests 

● 100,000 GET/SELECT and Other Requests 

 

Database Instances  

We assume that a PostGreSQL relational database system (RDS) will be used. The AWS 

equivalent of a pre-configured RDS instance type is db.r5.large, which is an ‘R’ series fixed 

performance instance, providing consistent performance suitable to a web delivery architecture. 

The db.r5.large RDS instance provides the following hardware specifications: 

● 20GB of storage; 

● 1 million input/output requests per month; 

● 1 CPU Core; 
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● 2 vCPUs; 

● 16GB RAM; 

● Up to 3500 MBps dedicated bandwidth; 

● Up to 10GBps network performance; 

● Up to 3.1 GHz Intel® Xeon® Platinum 8000 processor; and an 

● Intel AVX, Intel AVX2, and Intel Turbo. 

 

 

3.2.2 Cost Estimate 

The ability to scale the hardware resources up or down to suit the application demand allows for 

real-time cost optimization, with consideration for the application performance. Factors which 

could increase costs, and potentially require additional hardware allocations include changes to 

the: 

● Number of public users accessing data (e.g., downloading, clicking on map features to 

generate data summaries, and uploading data); 

● Frequency of spatial data processing and/or modeling (e.g., daily versus annually);  

● Data storage needs, which could occur if there were large increases in observations or 

predictions, or a new response variable was added (e.g., temperature); and  

● Application performance after user testing.  

 

If FDAT is used less than we anticipate or the requirements for model outputs are reduced, then 

the hardware resources can also be scaled down, decreasing costs.  

We estimate the minimum annual cost to deploy FDAT on AWS to be $4995 ($14,985 over 

three years) based on the assumptions about system usage, system demand, and storage 

needs (Table 1). If FDAT usage exceeds expectations or modeling occurs more than five times 

per year, a replica RDS service may be needed to improve performance and responsiveness; 

meaning that FDAT would effectively be running two synchronized databases to service 

modeling and web-based user queries (Section 5.3.1). In this case, the replica database 

(Amazon RDS Service, Table 1) would double in price, and the annual cost would be $8095 

($24,285 over three years). In the event that FDAT usage far exceeds usage expectations, we 

estimate that the cost for the upper end in performance, scale and responsiveness would be 

between $8,100 and $10,000 per year ($24,300- $30,000 over three years).  
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Table 1. Minimum annual cost to deploy FDAT on Amazon Web Services (AWS), broken down 

by service type. A three-year cost estimate is also provided for comparison with on-premises 

hosting costs.  

Service Annual Cost (USD) 3-Year Cost (USD) 

Amazon EC2 Service  1,405 4,205 

Amazon S3 Service 10 30 

Amazon RDS Service 3,100 9,300 

Amazon Elastic Load Balancing  275 825 

AWS Transfer In 0 0 

AWS Transfer Out 205 615 

AWS Support 0 0 

Total 4,995 14,975 

 

 

3.3 On-Premises Hosting  

The cost estimates for on-premises hosting by BPA are based on the assumptions described in 

Section 3.1. However, the estimate provided in Table 2 should only be used as a rough guide to 

costs. To obtain a more detailed on-premises costing, the following considerations should be 

made by the BPA:  

● Whether existing hardware is suitable for FDAT hosting; 

● BPA Network and System Administrator staff costs; 

● Ongoing patch, security and software maintenance for operating systems and database 

instances; 

● Internal software licensing costs for operating systems; 

● Cost to upgrade the hardware over the life of FDAT, while also allowing for replacement 

if hardware failure occurs; 

● Server redundancy and potential to scale up additional servers and database instances 

as needed, depending on FDAT usage; 

● Internal and external network traffic costs, load balancing, distributed denial of service 

(DDoS) protection and intrusion detection; and 

● Domain name and SSL certificate registration and maintenance. 
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3.3.1 Specifications 

The hardware specifications are equivalent to the AWS hardware specifications provided in 

Section 3.2.1.  

Web Server - Linux (equivalent AWS ‘t3.large’) 

● 100% utility / uptime 

● 2 x vCPUs 

● 8GB RAM 

● 5GBps network burst speed 

● Elastic load balancer up to 2780 MBps 

● 2 x 30GB SSD storage 

 

RScript Server - Linux (equivalent AWS ‘m5.2xlarge’) 

● 5% utility/uptime (on demand) 

● 8 x vCPUs 

● 32GB RAM 

● 10Gbps network burst speed 

● Elastic load balancer up to 4750 MBps 

● 2 x 30GB SSD storage 

 

PostGreSQL Database Instance 

● 20GB of storage 

● 1 million input/output requests per month 

● 1 CPU Core 

● 2 vCPUs 

● 16GB RAM 

● Up to 3500 MBps Dedicated Bandwidth 

● Up to 10GBps Network Performance 

● Up to 3.1 GHz Intel® Xeon® Platinum 8000 Processor 

● Intel AVX, Intel AVX2, Intel Turbo 

 

3.3.2 Cost Estimate 

It is difficult to estimate the on-premises hosting costs without knowledge of hardware 

purchasing providers, staff costs and the existing network infrastructure. Hardware costs have 

been estimated based on a Hewlett-Packard workstation provider (ZWorkstations 2020), 

although a mainframe would be utilized in practice. We also assume that hardware would be 
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replaced every three years and that there will be no hardware failures. Staff costs are based on 

the 75% salary percentile for a Network and Computer Systems Administrator (U.S. Department 

of Labor Statistics 2019).  

Based on these assumptions, the minimum cost for on-premises hosting over three years is 

$21,900, with an upfront cost of $13,700 in the first year and an additional $4,100 per year for 

maintenance (Table 2). To up scale the system to obtain better performance, responsiveness 

and/or more storage, the total cost estimate is $43,800 (approximately $27,400 in the first year 

and an additional $8,200 in the second and third years). Under this scenario the hardware costs 

and staff time needed to setup the servers doubles ($19,200), and annual maintenance costs 

grow to $8,200 per year.  

 

Table 2. Minimum cost estimate for on-premises FDAT hosting in years 1, 2, and 3, broken 

down into hardware and staff costs. The assumption is that hardware will be replaced every 

three years and all costs are in US dollars.  

Expenditure Type Description Cost Year 1 
Cost  
Years 2 & 3 

Hardware Costs    

Web Server Hardware  HP Z800 850 0 

RScript Server Hardware   HP Z820 1,750 0 

Server for PostGreSQL 
database 

HP Z800 850 0 

Staff Costs    

Server Setup 15 Days for Network and 
Computer Systems 
Administrator 

6,150 0 

Server updates and 
maintenance  

10 days per year for Network 
and Computer Systems 
Administrator salary 

4,100 8,200 

Total Costs  13,700 8,200 
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3.4 Summary 

The cost of implementing, hosting and maintaining FDAT is not insignificant, but we believe that 

it provides long-term value for money. Enormous field sampling and habitat restoration efforts 

have occurred in the Columbia River Basin, but existing data are often housed within different 

organizations and/or stored in disparate formats, making data integration at regional scales 

challenging. Analyzing data from multiple sources can also be a technical barrier for users who 

would benefit from basin-scale assessments, given the advanced skills in aquatic biology and 

ecology, spatial science, and computational modeling and statistics needed to fit spatial 

statistical stream-network models, and other comparable models. The FDAT addresses many of 

these needs.  

• It is designed to incentivize the development of consistent, centralized databases that 

are freely available to the public.  

• It removes the technical barriers by automating the spatial data processing and network-

scale modeling of fish density and abundance datasets collected by multiple 

organizations.  

• The predictive model outputs, including uncertainty estimates, provide new information 

about current status and future trends mined from existing datasets, which are also 

freely available for download.  

• Predicted abundances can also be integrated over the full network or subdomains within 

the network to obtain population estimates at a variety of spatial and/or temporal scales 

that are most relevant to conservation and investment planning.  

• Analysis methods are well documented, easy to locate, and reproducible, to promote 

transparency and provide users with the confidence in the results.  

While the primary focus of FDAT is on fish density and abundance data, the software 

architecture was designed to be scalable and robust as FDAT evolves. Thus, the same system 

architecture can be used to integrate data and model other stream variables such as 

temperature, with relatively minor modifications. 

 

 

4 Functional Requirements 

4.1 User Roles 

Security and authentication form an important part of any publicly exposed web application. The 

web interface will provide the ability to register for a new user account, login, and reset 

passwords. Credentials and authentication data will be encrypted and stored in the application 

database, as per industry best practices.  
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To manage users and allow restricted access to different application functionality, there are 

several account roles required:  

● Administrators: approve, create and remove users;  

● Public Users: explore, visualize, and download input data, shapefiles, model outputs, 

and documentation describing spatial processing and modeling methods; and 

● Registered users: have access to all of the functionality of public users, plus the ability 

to upload new observation datasets. 

 

4.1.1 Administrative users 

Administrator accounts are for use by BPA staff and will have permission to approve new 

account registrations, disable access for existing account registrations, view statistics for 

registered users, and remove erroneous data. In addition, all interactions within the FDAT 

application will be tracked in the system database. This will allow the Administrator to examine: 

● Authentication attempts and IP addresses; 

● Account registrations;  

● Data upload activity, by user; 

● Log files for modeling that contain error messages; and 

● Data download statistics. 

 

Note that the reporting tools and associated data will only be available to Administrative users. 

 

4.1.2 Registered users 

Registered users will be able to log into the system using a standard authentication form 

containing a username and self-managed password. They will then be able to upload a dataset 

in a standardized format, which is subsequently incorporated into the existing data used for 

predictive modeling. There are a combination of approaches that could be used to initiate new 

Registered user accounts. New users could request a Registered user account, which would 

require approval from the Administrator. The BPA could also generate and send Registered 

user credentials with temporary passwords to contractors, requiring a new password on first log 

in. This would allow the BPA to automatically generate user accounts associated with each 

project they fund so that field data may be uploaded and stored in a central repository. 
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4.1.3 Public users 

Public users anyone interested in exploring data or FDAT model outputs who does not have 

permission to contribute data to the system. This might include university researchers, 

contractors or other scientists who are not currently working with the BPA, as well as the 

general public. Public users will not be required to register to access and download observation 

data, shapefiles, or model outputs. However, it would be possible to implement rate-limited 

application programming interface (API) services in the future if website usage scales beyond 

initial expectations. API rate limiting would be implemented by requiring public users to register 

before accessing data APIs. A unique API token would be used to digitally sign their data 

requests, which enables usage tracking and where necessary, allows limits to be placed on 

access for excessive users. This would in some ways hinder public data access and so it is not 

recommended at this stage. 

 

4.2 Visualization, Exploration & Download 

All FDAT users will interact through a web-based application, which provides access to a spatial 

data exploration interface, custom generated figures summarizing observations and model 

outputs, and the ability to download observations and model outputs (Figure 1a). 

4.2.1 Mapping 

The web-based mapping interface is the main tool for interactive data exploration, which allows 

users to visualize data from multiple organizations, as well as model outputs. Standard mapping 

mouse-based interactions, similar to those used in common interfaces such as Google Maps 

and Apple Maps, are used to navigate spatial layers within the spatial extent of the stream 

network. This standardized interface ensures that the vast majority of users will be able to 

intuitively use the system. 
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Figure 3. FDAT web-based mapping interface allows users to explore field observations from 

multiple organizations.  

 

4.2.2 Figures/Graphs 

FDAT users will also be able to interactively generate and explore a number of visual 

summaries through the mapping interface, including figures showing data collected at a site 

over time or summaries of predictions and associated estimates of uncertainty over 

predetermined spatial scales (i.e., population or catchment). The user can turn a variety of 

spatial base layers on and off using a menu/legend interface (Figure 4a); while also being able 

to further interrogate data associated with spatial features such as observation and prediction 

points, populations, and catchments by clicking on or selecting the interactive components of 

the map. 
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4.2.2.1 Explore Observations 

A user can explore the existing observational data by interacting with the map interface and 

clicking on individual observation sites. Each unique observation location will be shown as a 

point feature on the map, overlaid on the stream network and underlying mapping layer (Figure 

4a). When a site is selected, the user will be presented with a figure showing the observed 

species density per year, broken down into juvenile and adult age classes (Figures 3a and b). If 

more than one species is present at a site, then figures may be stacked or contain different tabs 

that allow the user to switch between species and explore data.  
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Figure 4.  Visual summaries of observation data can be interactively launched through the 

FDAT mapping interface.  
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4.2.2.2 Explore Predictions 

To explore fish density predictions for given a site, population, and/or catchment by species, the 

user selects a layer in the menu/legend interface and clicks on a spatial feature in the map to 

visually display information. Figures will appear summarizing predictions for a given species, per 

year, including the estimates of uncertainty for the predictions (Figure 5). 

  

 

Figure 5. Visual summaries of point predictions show the predicted fish density, by species, over 

time as a total and broken down by age class. Associated estimates of uncertainty are also 

provided for each of the predictions. 

 

4.2.2.3 Dynamic Summaries 

An optional feature that could be included in FDAT is to allow users to interactively select point 

predictions through the mapping interface and then request mean predictions, with estimates of 

prediction variance over the user-defined area. These are referred to as ‘block kriging’ 

predictions and would be displayed in a similar style to populations and catchments. In addition, 

the predictions could be made on-the-fly and provided for download as a .csv file through the 

mapping interface. 
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4.2.3 Download  

One advantage of the FDAT is that it provides a central repository for field observations 

collected by multiple organizations and model outputs. This ensures that data are freely 

accessible to the public, that analysis methods are well documented, and that the modeling 

outputs are reproducible. FDAT users will be able to download the: input data used to fit the 

predictive models; shapefiles representing streams, observation locations, prediction locations, 

and catchment and population boundaries; and .csv files containing predictions with estimates 

of uncertainty at point, population, and catchment scales. In addition, a pdf document describing 

the methods used to process the data, fit the statistical models, and generate predictions will be 

available for download through the website.  

 

4.3 Data Upload 

Registered users are granted permission to upload new observations to FDAT in the BPA data 

exchange standard (DES) format (Appendix 1) using a traditional file upload form. The data are 

validated (Figure 6) before additional processing, modeling and visualization takes place (Figure 

1b).  

  

4.3.1 Data Validation 

The DES is formatted Excel file, which enables data from multiple organizations to be 

automatically combined within FDAT. Once the user has uploaded their data file, it is analyzed 

on the server to ensure the data entered is complete, conforms to the standard correctly, and is 

free of obvious errors (Figure 6). If the file fails the validation process, it will be rejected by the 

system. The user will then receive an error message explaining why the file was rejected and 

will be asked to make corrections and retry. If the file passes the validation process, the user is 

taken to the Snap Points user interface.  
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                               Figure 6. The Data Upload workflow within FDAT. 
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4.3.2 Snap Points (UI) 

When a registered user uploads their observations in DES format, the locations of the 

observation points may not align exactly to a location on the stream network (Figure 7) due to 

errors in the GPS locations, the resolution of the digital streams dataset, or changes in the real-

world location of a stream reach (i.e., meandering streams). Nevertheless, this is a requirement 

for the spatial stream-network models used within FDAT and so locations must be moved to the 

correct line segment. The Snap Points interface allows the user to interactively undertake 

quality assurance and quality control (QA/QC) of the data editing process to ensure data are 

represented correctly in FDAT.  

The Snap Points interface allows Registered users to visually examine each site location and 

manually drag observation points nearer to the correct stream location if necessary (Figure 7). 

Once the site locations have been adjusted, the user clicks the ‘Snap Points’ button which 

initiates the process of moving observation points to the nearest location on a line segment. The 

new site locations are then displayed on the map so that the user can clearly see where the new 

sites reside. This iterative process continues until the user is satisfied the locations are correct 

and clicks the Save Changes button. 

After the QA/QC process is complete and the changes have been saved, the user submits the 

data to the FDAT database. They will also be given the option to download a modified version of 

the data file they originally uploaded in the DES format, with two new columns appended 

representing the coordinates for the updated field site locations.    

 

4.4 Spatial Data Processing 

Numerous spatial data-processing steps take place behind the scenes in FDAT to ensure the 

field data contributed by users is in a suitable format for spatial stream-network modeling 

(Figure 1c). An overview of these steps is provided in the following sections. 

 

4.4.1 Observation Queueing  

When new observations are uploaded by users throughout a given day, the new records are 

queued in a separate part of the database before the spatial processing takes place. A 

scheduled task is triggered at set time points (e.g., daily, seasonally, annually, etc.), which starts 

the spatial data-processing process (Figure 1c). Note that this schedule can be adjusted 

accordingly to suit the BPA requirements once the system is in use. It also occurs independently 

of the predictive modeling tasks, which means that the spatial data processing and predictive 

modeling can be scheduled to run at different time intervals. New observations, potentially 

contributed by multiple users, are converted to shapefile format and imported into R Statistical 

Software (R Core Team 2020) using the osSTARS package developed in this project. As each 
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new set of observations is processed, the database is updated to remove them from the queue, 

with the success or failure of the process logged in the database for examination by the 

Administrator if required. If there are no records in the queue, the process is terminated before 

execution.  

 

 

Figure 7. The Snap Points user interface, which allows users to view the current location of field 

observations in relation to the stream segment and manually adjust them prior to snapping. 

 

 

4.4.2 osSTARS 

The osSTARS package replicates the core functionality of the STARS custom toolkit (Peterson 

and Ver Hoef 2014) needed to support the FDAT. Five new functions were created that have a 

1:1 relationship with those found in STARS (Table 3; Appendix 2). These functions convert the 

streams and observed sites to a Landscape Network (LSN) structure, which is the primary data 

format in STARS (Peterson and Ver Hoef 2014). There are also functions to calculate the 

upstream distance (upDist) from the stream network outlet to the upstream node of each line 
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segment and to each individual observed site location. Custom R scripts are used to 

automatically generate and record covariate values (i.e., predictor variables) in the new 

observation sites attribute table, based on attributes in the edges shapefile (e.g., stream slope), 

raster layer values (e.g., land use), or data from nearby weather stations (e.g., air temperature). 

Additive function values are also needed to fit spatial stream-network models using the tail-up 

covariance function (Ver Hoef and Peterson 2010) and these are generated using the 

additive.function function in the SSN package (Ver Hoef et al. 2014) for R Statistical Software (R 

Core Team 2020); thus, a corresponding function was not included in osSTARS. Once the 

osSTARS Pre-processing and Calculate functions (Table 3) have successfully completed, the 

new observation sites are merged with the existing set of observation sites using custom R code 

to create a single, updated shapefile of observation sites. At this point, all of the data are 

exported to a .ssn object, which is identical to .ssn objects created using the STARS tools. This 

.ssn object represents the input data for the Modeling and Predictions component of FDAT 

(Figure 1d). Please see Appendix 4 for a more detailed description of the individual osSTARS 

functions. 

 

Table 3. The relationship between STARS tools and equivalent functions within the osSTARS 

package. osSTARS functions are listed in the order that they will be called within FDAT. 

STARS Tool Name osSTARS Function Name 

Pre-processing 
Polyline to Landscape Network 
Snap Points to Landscape Network 

 
polyline_to_network 
snap_pts_network 

Calculate 
Upstream Distance – Edges 
Upstream Distance – Sites 

 
getUpstreamDist_Edges 
getUpstreamDist_Sites 

Export 
Create .ssn object 

 
CreateSSN_Obj 

  

 

4.5 Modeling & Predictions 

Significant investments in long-term field sampling throughout the Columbia River Basin create 

both an opportunity and a challenge for spatial stream-network modeling at regional scales. We 

estimate that the number of fish density observations currently available will be between 10,000 

and 15,000, with up to 150,000 prediction locations, depending on species. Traditional spatial 

statistical models are not feasible for these data because solutions are not found in realistic 
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timeframes or the memory requirements needed to invert the autocorrelation matrices and/or 

store them cannot be met.  

The SSNbd package (https://github.com/jayverhoef/SSNbd) for R statistical software was 

developed in this project to address the computational challenges of fitting spatial statistical 

stream-network models to large datasets and making predictions across the Columbia River 

Basin. First, new R functions were created to generate pairwise stream distances between 

observations, observations and predictions, and between predictions using the filematrix 

package (Shabalin 2018). These functions allow pairwise hydrologic distances to be calculated 

in computationally manageable steps and then stored as files rather than attempting to store the 

massive matrices in computer memory. Another advantage is that the matrices can be 

accessed using indexing, as is usual with R matrices stored in memory. The functions used to fit 

spatial statistical stream-network models and make block kriging predictions in the SSN 

package have also been modified to make use of data partitioning methods in the SSNbd 

package, which improves the computational efficiency of statistical estimation and prediction. 

This approach allows the dataset to be subsampled to produce smaller, spatially structured 

subsets of observations, which are used to quickly estimate parameters. These parameter 

estimates are then combined using a weighting scheme informed by cross-validation predictive 

ability to produce global parameter estimates used in the modeling and prediction (Barbian and 

Assuncão 2017). In addition to the methodological modifications, all of the functions have been 

written to take advantage of parallel processing, which further reduces processing time by 

enabling the tasks to run on multiple microprocessors simultaneously.  

 

4.5.1 Methods 

The spatial, topological, and attribute data contained in the .ssn object are re-imported into R, 

where updated distance matrices are calculated. The SSNbd package (Ver Hoef et al. In Prep) 

is then used to fit spatial statistical stream-network models and produce semi-continuous maps 

of fish density using the universal kriging equations (Cressie 1993). Methods for spatial stream-

network modeling and block kriging were originally described in Ver Hoef et al. (2006) and Ver 

Hoef (2008), with recent modifications specific to estimating fish population sizes in stream 

networks described in Isaak et al. (2017). A detailed description of the statistical methods is also 

provided in Monitoring Method ID 6621.  

FDAT produces abundance estimates, with estimates of uncertainty, by species and age class 

at multiple scales. First, predictions of average fish density per 100m are generated at a dense 

set of prediction locations spaced evenly across the stream network (e.g., 250m to 1km; Figures 

7 and 8). Mean predicted abundance, along with associated uncertainty estimates, can then be 

generated over larger extents, such as population boundaries (Figure 10), by integrating values 

at prediction points found within the area (Ver Hoef 2008; Isaak et al. 2017). This process can 

https://github.com/jayverhoef/SSNbd
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be repeated at other management-relevant scales (e.g., catchment or HUC) and used to 

generate abundance estimates for multiple species across the Columbia River Basin.    

 

 

Figure 8. Point-scale fish density/100m with associated estimates of uncertainty can be visually 

explored through the FDAT web-based interface (modified from Peterson et al. 2018).  

 



 

38 
 

  

Figure 9. Prediction standard errors appear as translucent circles as the user zooms in. Circles 

are proportional to the relative magnitude of the standard error. The orange inset is simply an 

example showing differences in prediction standard errors from another part of the network. 
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Figure 10. Predictions of Chinook salmon abundance for the Lostine Rivers population (modified 

from Peterson et al. 2018). 

 

 

5 Software Architecture 

The recommended FDAT system architecture is best described as a traditional web-server 

environment with supporting database, file store and a customized RScript Server (Figure 11). 

In the following sections we provide a detailed description of the architecture requirements, 

including the servers, file storage and web assets, database instances, application 

environments, and browser support. Only the necessary components of FDAT will be exposed 

to the public internet (Figure 11), which ensures that the security of the database and underlying 

RScript server are never compromised.  
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Figure 11. An overview of the system architecture with network topology. 

 

We also considered how data will move through the system in the infrastructure design (Figure 

12). It should be noted that the same Web server provides a source of entry for the observation 

data and the delivery mechanism for model outputs, while the RScript server undertakes spatial 

data processing and modeling. 
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Figure 12. Data flow between the Web and RScript servers. 

 

 

5.1 Servers 

Separate servers and database instances will be used for FDAT to ensure that the computing 

resources are optimally allocated. This ensures hosting costs are utilized correctly to suit the 

specific functional requirements of the application, while compartmentalizing the components in 

a logical manner for ease of design build and maintenance. For example, we expect public 

users to explore and access data regularly throughout the year, which requires relatively little 

computing power. In contrast, the RScript server will use considerably more CPU processing 

resources and memory than the Web server instance when data are processed and modeled, 

but this will only be needed at set times. Thus, the ability to separate the Web and RScript 

servers enables scaling and resource allocation as required, thereby, improving processing 

speeds and ensuring optimal user experience. 
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5.1.1 Web Server 

In general, the initial FDAT Web server set-up requires: 

● Internet accessible server, with ports and firewalls implemented as needed; 

● SSL Certificate with suitable domain name; 

● Read access to the public file storage folders; 

● Write access to the File Uploads folder; and 

● Authenticated access to the database, only exposed through an API publicly. 

 

We also recommend using NodeJS (OpenJS Foundation 2020) in FDAT because it is: 

● A widely used and well-developed open-source web server environment; 

● Custom designed on the Google V8 Engine;  

● Designed for data intensive, response applications; and 

● Can be scaled to multiple computing resources.  

 

Additional benefits of NodeJS include:  

● Access to Node Package Manager, which is a library of open source repositories; 

● Operating system independent and can be deployed on Windows or Linux; 

● File streaming module support for the delivery of large files using streaming; 

● Supports multithreading, utilizing server resources;  

● Shared language and syntax between server and client, allowing code reuse; 

● Supports non-blocking event-driven operations and is well suited to web applications; 

and 

● Designed for real-time data from server to client. 

 

It should also be noted that in a cloud environment, the entire NodeJS web server can be 

redeployed by the developer with single line commands, without assistance. This removes the 

need for a system administrator to perform deployments and speeds up iterations of application 

testing and development. 

 

 

5.1.2 RScript Server 

The RScript server will be a standalone virtual-server instance, which will run an up-to-date 

instance of an operating system, regardless of whether it is a Windows or a Linux variant; noting 

that R statistical software (R Core Team 2020) can run in either environment. The server will not 

be directly accessible or available on the public internet (Figure 11). Instead it will be used to 

create file assets (e.g., updated observed sites shapefile or historical backups) and modeling 

outputs via database queries, file inputs and RScript tasks, which are delivered through to the 

FDAT Web server file store and API for internet accessibility (Figure 12). 
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The RScript server will have a series of scheduled tasks, which perform the data queuing, 

spatial data processing, and modeling as detailed in the following sections. Depending on the 

operating environment, these will either be Windows scheduled tasks or Linux cron job calls at 

set time intervals. These scripts will launch batch scripts and R scripts to perform the spatial 

data processing and modeling, file creation, file copying and database interactions. In terms of 

network topology (Figure 11), the RScript server will need to make authenticated database 

queries and have the ability to read and write from the various asset folders, for the generation 

of shapefiles and files for data downloads (see Section 5.2 for additional details). 

The hardware allocation for the RScript server will be informed by performance testing during 

the development phase of FDAT. Both performance and cost should be considered to ensure 

that the system can perform the modeling in an acceptable time frame at reasonable cost, with 

future processing needs in mind. It is also important to note that, in an on-demand cloud 

computing environment, the RServer instance would only be operational and incurring an 

expense when it is in use. This removes the need for a server to sit idle when modeling is not 

performed, greatly reducing hardware allocation costs.  

 

5.1.2.1 Software Requirements 

R statistical software (R Core Team 2020) ≥ version 3.4.0 will be used to undertake the RScript 

server tasks and must be installed on the server. Several R packages are also needed to 

support the underlying RScript tasks: 

• SSN  

• osSTARS   

• SSNbd   

• RSQLite (≥ 1.1-2) 

• sp 

• igraph (≥ 1.0.0) 

• maptools 

• lattice 

• methods 

• Matrix 

• rgdal (≥ 1.2-5) 

• rgeos (≥ 0.3-22) 

• filematrix 

• foreach 

• doParallel 

• iterators 

• itertools 

• parallel 
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• nabor 

• sf 

 

The RScript server will require a system account with the ability to execute Windows scheduled 

tasks or Linux cron jobs, which will call R scripts stored on the RScript Server. This account 

should have appropriate read and write permissions to the file storage locations detailed in 

Section 5.2. 

 

5.1.2.2 RScript Scheduled Tasks 

Three tasks are executed on the RScript server to process new observation data, fit models, 

and generate model outputs. The three tasks include Queue Observations, Spatial Data 

Processing and Modeling & Predictions (Figure 13), which are executed at scheduled intervals 

(e.g., daily, weekly, monthly, seasonally, or annually), with a minimum offset between each task 

to allow the previous process to finish before the next starts. The separation of the tasks within 

the RScript server allows for independent scheduling and computing resources to be applied to 

each process, optimizing performance and resource allocation. Throughout the execution of 

each RScript task, both errors and success of operations are tracked by allowing the RScript 

server to log events to relevant database tables. This provides Administrators with easily 

accessible information about the cause of the errors in the event there are issues in the 

execution of tasks. 

 

5.1.2.2.1 Queue Observations 

New observations will be queued in separate database tables to indicate they are pending 

processing (Figure 14). A scripted query will be performed on the Observations Database 

tables, to check for records that have not been processed before beginning the process. The 

process requires read/write access to the Working Directory and Historical New Observations 

folders. 

In the event that this dataset contains new observations, the following tasks are triggered 

(Figure 14). 

1. A New_Obs shapefile is created, which contains all the new observations uploaded by 

users which have not yet been processed. 

2. The resulting shapefile is placed into the Working Directory, which holds all the 

unchanged file inputs needed for the Spatial Data Processing task. 

3. The previous version of the sites shapefile is copied into a backup folder and 

appropriately renamed with a date stamp to allow for potential rollback, or the 

examination of changes to the files over time if required. 



 

45 
 

4. For each completed observation set, a query will be called on the database, which takes 

as input the Row ID for a given observation, and updates the given row Boolean flag to 

be marked as Not Pending, meaning it has been processed. This completes the 

processing for a set of observations. 

 

In the event that there are no pending records, the task exits without triggering these actions. 

The Queue Observations process enables multiple users to upload data simultaneously and 

prevents excessive CPU usage incurred by running the Spatial Data Processing and Modeling 

and Predictions tasks after each new data upload. Testing during the development phase will 

determine the minimum offset between tasks, but we anticipate a minimum of one hour to 

process batches of new observations before modeling tasks commence. 

 

 

Figure 13. Workflow of RScript server scheduled tasks. Each task is dependent on the outputs 

of the previous task. 
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Figure 14. Queue Observations workflow. 

 

5.1.2.2.2 Spatial Data Processing 

The second scheduled RScript task runs a series of R scripts that generate the spatial, 

topological, and attribute information needed to fit spatial statistical stream-network models to 

the new observations in the Modeling & Predictions task (Figure 15; Section 4.5 and Appendix 
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4). The process requires read/write access to the Working Directory, which serves as both the 

input for this task, as well as the destination output folder.  

 

 

 

 

Figure 15. Spatial Data Processing task workflow. 

 

Once the spatial information has been generated, the new observations are merged with the 

existing observations to create an updated sites shapefile and the temporary New_Obs 

shapefile is deleted from the working directory. The updated sites shapefile is then copied to the 

.ssn (Model Input) folder (Figure 15), and the previous copy of the file in that folder moved to a 

backup folder called Historical Sites. The file is renamed according to the current date and time. 
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The data in the updated .ssn (Model Input) folder now forms the input for the Modeling & 

Predictions task, and contains all of the observation data uploaded to FDAT to date.  

 

5.1.2.2.3 Modeling & Predictions 

The Modeling & Predictions RScript task fits spatial statistical stream-network models to the 

data found in the .ssn (Model Input) folder, generates predictions, with associated estimates of 

uncertainty at multiple scales, and formats these model outputs for use as visualization layers, 

database records, and publicly available data downloads (Figure 16). Although this task initiates 

on a schedule in the same way the previous RScript tasks do, the first part of the task is to 

check the date the sites shapefile was last modified to see if it was updated since the model 

was last executed. In the event that no new observations have been provided, the task will exit 

without running. If a recently modified sites shapefile is detected, the modeling process begins 

(see Section 4.5 for details).  

The outputs for this process are fed back into the web application for visualization, downloads 

and to support dynamic web queries with additional predictions stored in the database (Figure 

16).  

1. Visualization Layers: contains the updated sites shapefile, so that users can view the 
observation data via the web interface. The shapefiles are converted to a format the 
mapping library supports (e.g., GeoJSON). 

2. Database Records: New observations and predictions are stored in the database 
instance, which has been optimized for both spatial and temporal queries of massive 
datasets. This improves the efficiency of the dynamic web queries needed to support the 
on-demand summary figures generated for users in the web interface (please see 
Section 4.2.2). 

3. Data Downloads: The predictions are exported as .csv files named based on the current 
date and time, which contain the predictions and associated estimates of uncertainty, at 
the point, population, and catchment scale, by species and age class. These data are 
then stored, along with the Model Input data and a pdf document describing the 
modeling methods in the Data Downloads directory. 
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Figure 16. Overview of FDAT Modeling & Prediction workflow. 
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5.2 File Storage & Web Assets 

The Web and RScript servers will depend on both static and generated file assets (Figures 13, 

14, and 15). In this section we explore the types of files that are produced and provide 

recommendations for storage architecture.  

Cloud computing provider AWS provides a relatively inexpensive file storage (Leoni 2019) and 

delivery service over the internet, referred to as S3 storage. It acts much like a traditional folder 

on a computer or server, but the underlying infrastructure is designed for multi-level redundancy 

and history, with easily managed security and access restrictions. This can be a cost effective 

mechanism for static file storage and delivery, which also has the ability to scale well beyond 

the anticipated needs of FDAT. FDAT files that would be served from S3 buckets or equivalent 

on-premises file storage include (Figure 16): 

● Static web files, including JavaScript libraries, images, custom scripting files, and the 

mapping library framework used in the FDAT web interface; 

● System generated shapefiles for user download; 

● System generated CSV files for user download; and 

● System generated files in the DES format containing updated observation coordinates, 

for user download. 

 

The different file and folder requirements can be separated into those that are exposed to the 

internet and those that are only accessible from the RScript Server within the protected network 

(Figure 17). We discuss this in more detail in the following sections. 
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Figure 17. The FDAT storage architecture is divided into the demilitarized zone (DMZ) Web 

Accessible components and the secured RScript protected network. In the Web Accessible 

component, static files have read only access, while dynamic files are updated by the RScript 

server and require read/write access. All files that are RScript accessible require both read/write 

access internally, but are not accessible from the DMZ.  

 

 

5.2.1 Static Files & Web Caching 

Static files in a web application are typically files delivered to the client’s web browser which do 

not change over time (Figure 17). Files and folders containing static files will be set with read-
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only access within the server environments. There are occasions when core code libraries will 

be updated, but generally these files are also considered static. In this application, static files 

include:  

Code / JavaScript Libraries: 

● Mapping Provider JavaScript Library; 

● HTML / NodeJS source files; 

● CSS files / Framework; 

● Custom FDAT JavaScript libraries; and 

● 3rd party user interface libraries. 

 

Images: 

● Web Interface images. 

 

File Downloads: 

● Modeling methods (pdf). 

 

Mapping Data 

● Stream network shapefiles; 

● Catchment boundaries shapefiles; 

● Prediction sites; and 

● Population boundaries. 

 

Static files provide the opportunity to utilize caching within the Web server environment. In other 

words, static files can be served from memory rather than the disk itself, which improves the 

speed of data delivery and reduces server workload (Ellingwood 2015). This approach is 

considered best practice for delivery of web assets which do not change over time and require 

rapid delivery to the client. (Davison 2001) The caching of static files provides a significant 

improvement in file delivery speed in balance with the cost limitations of the project design. 

 

5.2.2 Dynamic Files 

The dynamic nature of FDAT means that some underlying files will change over time as new 

RScript tasks are completed. These files are delivered to the various read/write folders from the 

RScript Server, with appropriate permission required (Figure 17). 

Registered users can also upload observation data to the web-based FDAT in the DES format. 

As mentioned previously, user uploaded files pose a security risk because they can be used to 

execute files within the Web server environment or gain access to secure areas within the 

system. We have addressed this in the design by setting read/write permissions only on the 

folders required, isolating user contributed files within their own folder located outside the 
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protected network, checking the multipurpose internet mail extensions (MIME) types of 

uploaded files, and renaming the files on receipt. The files will also be parsed to ensure they are 

Microsoft Excel files in the expected DES format. Any failure of these checks will result in the file 

being rejected and deleted from the storage folder. All successful uploads will be retained in the 

File Uploads folder, using a timestamp to rename them appropriately (Figure 17).  

For the purposes of the Snap Points web interface (Section 4.3.2), the files are read into 

memory on the Web server and delivered back to the client via the data API services, which 

only requires the file to be read once. These files will not be cached, but instead stored in a 

slightly slower access file folder, accessible on the internet. Note that the speed of file access 

for this folder is not as important as speed of access for files served to the user via the web 

interface because they are not regularly accessed. The data files uploaded into the system in 

DES format will also be available for download, with two additional columns added describing 

the new coordinates for the observation sites, after the snapping has occurred. However, the 

data file is only made available to the user who uploaded it. These files can be generated 

dynamically and streamed to the user’s browser session, which does not require file storage.  

The ability to perform dynamic queries on the observation and prediction data is required to 

support interactions within the web interface. Dynamic queries are also necessary for interactive 

block kriging summaries within user defined areas, if that optional functionality is implemented in 

FDAT. Some of these functions will also create shapefiles, GeoJSON, or comma separated files 

(.csv) files dynamically, which will be served from temporary file folders accessible by the Web 

server, or alternatively streamed directly to the client session from memory.  

 

5.2.3 Historical Backups 

Several files will continue to be updated over time, as new observations are uploaded by users 

and new model outputs generated (Figure 17). When new observations are contributed, a 

shapefile containing the new observations is created during the Queue Observations RScript 

task (Figure 14), which is used as an input for the Spatial Data Processing task. Each New_Obs 

shapefile is stored in the Historical New Observations folder to maintain a full history of 

observations contributed to FDAT. When new observations are combined with the existing 

observations in the Spatial Data Processing task (Figure 15), the full set of observation data is 

stored in an updated sites shapefile. Again, we store the historical versions of this file in the 

Historical Sites folder (Figures 14 and 16) to allow for error tracking, or in extreme 

circumstances, the rollback of the base observations, in the event of a processing failure.  

All user submitted files, which pass the DES validation steps will be retained in the File Uploads 

folder (Figure 17), applying a naming convention which identifies the date of upload and the 

user. These files will remain on the Web server and will only be read from their current location 

one time when they are parsed on upload to ensure they meet the DES requirements (Section 

4.3.1 and Appendix 1). 
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5.2.4 RScript Working Files 

The Working Directory and the .ssn (Model Input) folders (Figure 17) contain both the input and 

outputs for several tasks and so the system account operating the scheduled tasks requires 

appropriate read/write permissions. On completion of the final Modeling & Predictions task, 

output files are also copied to web accessible folders (Figure 16). Permissions in this case will 

only allow the RScript server to write to the public folders, with no read or write access back to 

the protected network housing the RScript server (Figures 10 and 16). 

 

5.3 Database Instances 

The FDAT database instance will be an enterprise relational database, which provides both 

read and write functions, triggered by web application interactions and scheduled tasks from the 

RScript Server (Appendix 2). The instance itself will support partitioning, indexing and replicas 

for high performance, as well as future proofing for potential data scaling. We recommend using 

PostGreSQL, but real-world data usage patterns must be tested during development to ensure it 

is suitable. Other databases might also be considered for larger datasets such as temperature, 

which is collected at fine temporal scales. In cases such as this, an additional optimized time-

series database may be needed to efficiently query data. This is not uncommon in larger scale 

solutions, where several database instance types are utilized depending on the specific data 

requirements. For these reasons, the database instance is a flexible component of the 

application, which can be swapped for another database type or tailored to data usage needs 

over time as the scope of FDAT grows and/or changes.  

 

5.3.1 High performance replicas 

The current FDAT design includes a single database instance, but multiple instances can be 

used in cases where usage or performance needs exceed these requirements. With modern 

database servers, additional synchronized copies of a master database (i.e., replicas) are 

relatively easy to create, especially in a cloud computing environment. These replicas provide 

additional server resources for handling database queries and are created to cater to the needs 

of the application, whether it be long running queries, intensive write operations or large-scale 

dataset delivery. Thus, database replicas optimize hardware for a specific use, providing a cost 

effective way to achieve greater performance, while minimizing costs.  

When considering database performance, the topology of the database instances must reflect 

the manner in which the application will be used. The main FDAT operations that are 

computationally intensive include: 

● Serving dynamic queries for map interactions, figures and downloadable data; 

● Generating shapefiles and GeoJSON files dynamically for subsets of data; and  
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● Recreating preprocessed data views after completing modeling and prediction tasks. 

 

A replica scenario in FDAT should separate the activities that create and write records from 

those that only read or scan data; thus assigning database resources to tasks that best suit their 

configuration (Figure 18). This proposed replica environment will ensure that there is no impact 

on the user experience in the web application when Spatial Data Processing and Modeling & 

Prediction tasks are being executed. It also opens up the possibility of deploying more database 

instances in a clustered environment to improve database performance as the application grows 

over time.  

 

 

Figure 18. Database replica instances designed to separate read/write functionality from read 

only functionality. 

 

Database performance and tuning is an important aspect of application design, especially in a 

data intensive environment such as the FDAT. We have not provided specific recommendations 

for database table design, indexing or partitioning here. Instead, a developer or database 

administrator will need to rigorously and iteratively optimize the database performance and 

underlying hardware allocations during FDAT development.  

 

5.4 Infrastructure Environment 

The Web and RScript servers, database instances, and file storage described in the previous 

sections can be hosted in a variety of ways to cater to the FDAT system architecture 

requirements. FDAT can be deployed on either a Windows or Linux variant environment, relying 

on interoperable software solutions such as NodeJS and R statistical software. While the 

implementation of scheduled processes to support the RScript Server differs slightly between 

operating systems, it is a routine task using Windows Scheduled Tasks or Linux Cron Jobs. 
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The implementation specifics are ultimately at the discretion of the developers and system 

engineers and will largely be driven by the feedback that the BPA provides on this proposed 

design. However, the FDAT architecture will require the following individual computing 

resources to serve the website, modeling and data delivery services: 

● At least one database instance with large storage support, redundancy, and scalability;  

● RScript server optimized for computationally intensive processing, scalability, and on-

demand computing; 

● Web server with low latency, cached and disk file delivery, and minimal compute; and 

● File storage that is low cost, with reasonable performance, redundancy, and scalability. 

 

 

5.5 Web Interface 

The FDAT web application will be designed and built using a single-page application (SPA), 

which interacts with the web browser by dynamically rewriting the web page with new data from 

the Web server (Monterio 2014). The SPA design is preferred over a traditional web page since 

it behaves and responds more like a desktop computer application, but is delivered via a web 

browser (RubyGarage 2018). 

The majority of web interface development will focus on the mapping and exploration interface, 

with minor supporting pages for authentication, user profiles and project information. The 

libraries and components to develop the web interface will include: 

● Responsive CSS framework; 

● Mapping library; 

● Mapping provider; 

● Graphing library; 

● Custom snapping interface; 

● Custom API / Data interactions; 

● Custom dynamic query interface; 

● Authentication and user profile forms; and a 

● Data upload interface. 

 

A modern responsive CSS framework will be used to implement the user interface design. The 

CSS framework allows for rapid development of a web application layout, which is suitable for 

different screen sizes, devices and browser environments with minimal effort from the 

developer. Many different CSS frameworks would be suitable for this task including Bootstrap 

(Otto 2020) and Foundation (Foundation 2020). Therefore, the choice will ultimately depend on 

the developers’ familiarity with particular frameworks.  
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The mapping library performs the rendering and interactions of the map itself, while the mapping 

provider supplies the underlying basemap and aesthetic for the map (Appendix 3). We reviewed 

mapping libraries and providers (Appendix 3) and have recommended the MapBox or 

CesiumJS mapping library, with the MapBox mapping provider. The interface will include the 

ability to switch between different underlying basemaps (Appendix 3). 

A graphing library will provide visual summaries of data (e.g., bar charts, line charts, etc.) 

associated with the observations, predictions and estimates of uncertainty at multiple scales. An 

API will deliver data to render the charts within the web browser dynamically. We reviewed 

graphing libraries such as Chart.js, Plotly.js and D3.js (Appendix 3), but a variety of different 

graphing libraries could be used to implement this functionality.  

Existing software products will be used to develop FDAT where possible, but custom code is 

required to implement more specialized functionality. For example, the exact functionality 

needed for the snapping interface (Section 4.3.2) is not native to any mapping provider, but 

some provide native functionality that reduces the time needed to develop the custom code 

(Appendix 3). Thus, the snapping interface will be developed using a custom JavaScript overlay 

and interface that works in unison with the mapping library, as was the case in FDAT Phase 1 

(Peterson et al. 2018; Appendix 3). Custom data API interactions will also be used to connect 

and deliver data to the mapping interface, graphing interface, file downloads and dynamic query 

tools. We recommend that all data services be delivered through asynchronous JavaScript 

requests to an underlying API, ensuring decoupling of the interface and data services. This 

decoupling of functionality and data supports more specialized development, resource allocation 

and improved user experience while catering to the exposure of the API as a useful 

independent service, separate from the web interface. Web form elements and feature selection 

mechanisms are also required for the custom dynamic query interface (Section 4.2.2.3) on the 

map itself. Finally, the Authentication and User Profile (Section 4.1) forms will require form 

elements with input validation and connections into data services to perform authentication and 

retrieve, update and show profile information. 

 

 

5.6 Browser Support 

Modern browser support is an important consideration in FDAT, given that the public access 

point for the application is a website. We expect users to have an up-to-date version of Google 

Chrome, Firefox or the latest Microsoft Edge browser to ensure the best performance and allow 

the developers to use the latest in browser programming technologies and standards. However, 

consideration should also be made for users who have limited access to the latest browsers in 

their computing environment, including advisory messages where this would in some way 

degrade the user experience. The BPA should provide guidance about browser support if there 
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are internal security restrictions or recommendations for particular browsers because it may 

affect the user interface (UI) functionality. 

We do not recommend that FDAT be developed for use on mobile devices in Phase 3 due to 

limitations in performance of mapping libraries with large amounts of spatial data on mobile 

devices. While the latest JavaScript frameworks generally offer mobile support, it is not 

sufficient to ensure that the user experience on all mobile devices will be acceptable. Thus, 

users should be informed that a desktop or laptop device is the preferred method of access. 

Additional development could be undertaken to offer mobile support in future versions of FDAT, 

depending on feedback from the BPA and partner organizations regarding this requirement. 

However, additional software design considerations for mobile devices will likely increase 

development costs. 
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Appendix 1. Data Exchange Standard 

The following section documents the general field and fielder headers (i.e., column names) 

contained within the draft data exchange standard (DES) Excel file, as well as the type of data 

contained in each column, whether it is required, and a description. The details are provided 

here because it influences the data entry needs of the application. 

 

Project Information 

General Field: Org 

1. Field header: “Org” 

○ Value type: Text 

○ Required: No 

○ The name of the organization that conducted the work. 

 

General Field: Program/Project name 

1. Field header: “Program name” 

○ Value type: Text 

○ Required: No, but preferred 

○ The name of the program or group in the above organization that conducted the 

work. 

2. Field header: “Project name” 

○ Value type: Text 

○ Required: No, but preferred 

○ The name of the project that involved completing the work. 

 

General Field: Program / Project ID Number 

1. Field header: “Program / Project ID number” 

○ Value type: 

○ Required: No 

○ The reference number for the contracted work. 

 

General Field: Biologist name/Data owner 

1. Field header: “Biologist name / Data Owner / Contacts” 

○ Value type: Text 

○ Required: Yes 

○ The name of the party or parties associated with this data collection event (DCE) 

that are the main point of contact. 

2. Field header: “Contact phone” 

○ Value type: Number (formatted as a phone number) 
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○ Required: No 

○ The phone number that the above person can be contacted with. 

3. Field header: “Contact email” 

○ Value type: Text (formatted as an email address) 

○ Required: No 

○ The email address that the above person can be contacted with. 

 

General Field: Data access 

1. Field header: “Download URL” 

○ Value type: Text 

○ Required: Yes 

○ Equation: =VLOOKUP(J6,Data_System!$A$2:$B$325,2,FALSE) 

○ An URL that points to a downloadable version of the dataset containing the 

measurement data for this DCE, if one is available. This can be supplied by 

entering the URL, or selecting it from a list of values in the “Data_System” 

worksheet. 

2. Field header: “Data repository name” 

○ Value type: Text 

○ Required: Yes 

○ The name of the data system storing the data related to this DCE. 

 

General Field: Protocol 

1. Field header: “Protocol / Method name” 

○ Value type: Text 

○ Required: Yes 

○ The name of the protocol used for the work from monitoringresources.org, or a 

citation of a document that details the protocol. 

2. Field header: Protocol reference 

○ Value type: Text 

○ Required: No 

○ An URL that points to the above protocol document. 

3. Field header: Survey method 

○ Value type: Text 

○ Required: No 

○ The name of the method used to perform the work. This will be selected from a 

list of options. 

 

General Field: Sample Design 

1. Field header: “Sample design reference” 

○ Value type: Text 
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○ Required: No 

○ An URL that points to a document detailing the sample design, or a citation of a 

document that details the sample design. 

2. Field header: “Sample design type” 

○ Value type: Text 

○ Required: No 

○ The name of the sample design used for the work. This will be selected from a 

list of options. 

3. Field header: “Survey type” 

○ Value type: Text 

○ Required: No 

○ (?) This will be selected from a list of options. 

4. Field header: “Related report link” 

○ Value type: Text 

○ Required: No 

○ An URL that points to a document containing an (annual) report of the work, or a 

citation of a document that contains the (annual) report. 

 

Site/reach metadata 

General Field: Stream/Site name 

1. Field header: “Stream/Site name” 

○ Value type: Text 

○ Required: Yes 

○ The common name for the stream where the DCE took place in, or the given 

name for the site if there is no stream name. 

 

General Field: Geospatial coordinates 

1. Field header: “Latitude decimal degrees” 

○ Value type: Number 

○ Required: Yes 

○ The latitude of the site in degrees. 

2. Field header: “Longitude decimal degrees” 

○ Value type: Number 

○ Required: Yes 

○ The longitude of the site in degrees. 

 

General Field: Date 

1. Field header: “Survey date” 

○ Value type: Date (DD/MM/YYYY format) 
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○ Required: Yes 

○ The date on which the DCE took place. 

 

General Field: Survey Type 

1. Field header: “Survey type” 

○ Value type: Text 

○ Required: Yes 

○ (?) This will be selected from a list of options. 

 

Species type 

General Field: Species code 

1. Field header: “Species code” 

○ Value type: Text 

○ Required: Yes 

○ Equation: =VLOOKUP(Y6,Species_Codes!$C$2:$D$125,2,FALSE) 

○ The species code of the species of fish that was measured in the DCE. Can be 

selected from a list of options from PTAGIS, or through a list of values in the 

“Species_Codes” worksheet. If a value is entered in the “Species common name: 

Sampled/observed” column first, this value will be automatically populated. 

 

Species sampled descriptive name 

1. Field header: “Species common name: Sampled/observed” 

○ Value type: Text 

○ Required: Yes 

○ Equation: =VLOOKUP(X5,Species_Codes!$A$2:$B$125,2,FALSE) 

○ The name of the species of fish  that was measured in the DCE. Can be selected 

from a list of options from PTAGIS, or through a list of values in the 

“Species_Codes” worksheet. If a value is entered in the “Species code” column 

first, this value will be automatically populated. 

 

General Field: Species scientific: (Common name) 

1. Field header: “Species scientific: Common name)” 

○ Value type: Text 

○ Required: Yes 

○ The general species names for the fish measured in the DCE; made up of its 

scientific name followed the common name in brackets. This will be automatically 

populated based on the contents of the “Species code” column. 
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Size class 

General Field: Size classification 

1. Field header: “Size classification” 

○ Value type: Number (range) 

○ Required: Yes 

○ The size range of the fish measured in the DCE in centimeters, from minimum to 

maximum. A set of recommended bins are provided and are preferable to use, 

but custom values can also be entered. 

 

Abundance 

General Field: Number counted 

1. Field header: “Number counted” 

○ Value type: Number 

○ Required: Yes 

○ The number of fish measured at the site during the DCE. 

 

General Field: Type: Primary recaptures 

1. Field header: “Type: Primary recaptures” 

○ Value type: Text 

○ Required: No 

○ Documentation in text if the above count of fish includes the number of fish that 

were recaptured (recaptures require separate lines). 

 

General Field: Correction factor/observer error 

1. Field header: “Correction factor/observer error” 

○ Value type: Number 

○ Required: No 

○ The multiplier which was used as a correction factor to account for observer error 

and to support the estimated value of fish. 

 

General Field: Number estimated 

1. Field header: “Number estimated” 

○ Value type: Number 

○ Required: No 

○ The estimate of the number of fish extrapolated from the measurements in the 

DCE. 
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Sample unit size 

General Field: Sample unit size 

1. Field header: “Channel class/type” 

○ Value type: Text 

○ Required: No 

○ This column may be used to provide summaries for sites or “channel units”. 

Larger sites may have more than one classification, for which the value here 

should be “mixed”. Some data sets may also have more specific habitat classes. 

If this is left blank, “mixed” is assumed. This can be selected from a list of 

options. 

2. Field header: “Site/reach length” 

○ Value type: Number 

○ Required: Yes 

○ The average length of the site in meters. 

3. Field header: “Site/reach average width” 

○ Value type: Number 

○ Required: Yes 

○ The average width of the site in meters. 

4. Field header: “Site/Reach average depth” 

○ Value type: Number 

○ Required: No 

○ The average site depth in meters. 

 

Observed count 

General Field: Fish/meter 

1. Field header: “Fish/meter” 

○ Value type: Number 

○ Required: Yes 

○ Equation: =(AB5/AG5) 

○ The number of fish observed per meter. It can be entered manually or calculated 

based on the “Number counted” column divided by the “Site/reach length” 

column. 

 

General Field: Fish/meter2 

1. Field header: “Fish/meter2” 

○ Value type: Number 

○ Required: Yes 

○ Equation: =(AB5/(AG5*AH5)) 
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○ The number of fish observed per meter squared. It can be entered manually or 

calculated based on the “Number counted” column divided by the product of the 

“Site/reach length” column multiplied by the “Site/reach average width” column. 

 

General Field: Fish/meter3 

1. Field header: “Fish/meter3” 

○ Value type: Number 

○ Required: Yes 

○ Equation: =(AB5/(AG5*AH5*AI5)) 

○ The number of fish observed per meter cubed. It can be entered manually or 

calculated based on the “Number counted” column divided by the product of the 

“Site/reach length” column multiplied by the “Site/reach average width” column 

multiplied by the “Site/reach average depth” column. 

 

Estimated abundance 

General Field: Fish/meter 

1. Field header: “Fish/meter” 

○ Value type: Number 

○ Required: Yes 

○ Equation: =(AE5/AG5) 

○ The number of fish estimated to exist per meter. It can be entered manually or 

calculated based on the “Number estimated” column divided by the “Site/reach 

length” column. 

 

General Field: Fish/meter2 

1. Field header: “Fish/meter2” 

○ Value type: Number 

○ Required: Yes 

○ Equation: =(AE5/(AG5*AH5)) 

○ The number of fish estimated to exist per meter squared. It can be entered 

manually or calculated based on the “Number estimated” column divided by the 

product of the “Site/reach length” column multiplied by the “Site/reach average 

width” column. 

 

General Field: Fish/meter3 

1. Field header: “Fish/meter3” 

○ Value type: Number 

○ Required: Yes 

○ Equation: =(AE5/(AG5*AH5*AI5)) 
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○ The number of fish estimated to exist per meter cubed. It can be entered 

manually or calculated based on the “Number estimated” column divided by the 

product of the “Site/reach length” column multiplied by the “Site/reach average 

width” column multiplied by the “Site/reach average depth” column. 

 

User defined fields 

The user will also be allowed to add their own columns to the end of the spreadsheet, but these 

data will not be ingested into FDAT. 
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Appendix 2. Database Formats 

A2.1 Microsoft Access 

The Landscape Network (LSN) created by the Spatial Tools for the Analysis of River Systems 

(STARS) ArcGIS custom toolset (Peterson and Ver Hoef 2014) is stored as a personal 

geodatabase, which is in Microsoft Access format. However, we made the decision to move 

away from using ESRI ArcGIS (ESRI 2019) for spatial data processing in future versions of 

FDAT because the software is proprietary and the personal geodatabase format is not 

supported anymore. We considered whether Access would be a suitable database for storing 

FDAT observations and predictions, but decided against it because: 

● Microsoft Access is not considered a general Enterprise solution for multi-user 

architecture, especially for those delivered over the internet. Instead, it is designed for 

installation on client computers, while Enterprise database solutions are designed for 

high performance and accessibility and deployed onto a server environment. (Opengate 

Software 2010) 

● Access is incompatible with MacOS and Linux operating systems. Even within Windows, 

accessing the database with different versions of Windows or Microsoft Access may 

cause database corruption (SQL Programmers 2014; Access Programmers 2016). 

● Access is a file-based database rather than a client server-based database (Comeau 

2020). Users must be able to access the database file itself, which is achieved by 

copying the database file to multiple computers or having the database file available on 

a shared network drive. Depending on the size of the database, transmitting data over 

the network can be slow (SQL Programmers 2014). This also means that Access 

databases can not be (reliably) accessed over the Internet. Access 2010 provided the 

ability to create a web database, but this function will be discontinued in February 2020 

(Microsoft 2010). 

● Another consequence of being file-based is that Access databases are more vulnerable 

to corruption in the event of a hardware or software problem. If Access is unexpectedly 

closed while data is being written to the database file, the database will enter a corrupted 

state and will need to be repaired (Access Programmers 2016). Client-server databases 

do not encounter this problem as often, as the database is separate from the client 

application on the user’s machine, and they automatically perform changes as 

“transactions” which are rolled back in the event of a problem before they are complete 

(MySQL 2020a). 

● Access databases do not automatically free up space over time if records are deleted. 

This can cause the database file to become much larger than is required as old deleted 
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records build up. A “compact” operation must be performed manually in order to free up 

the space occupied by the deleted records (Wikibooks 2016). 

● Access can support multiple users accessing the same file at one time, but the number 

of users that can access it at once before performance begins to suffer can be relatively 

low (SQL Programmers 2014); although this depends somewhat on the design of the 

database (FMS 2010). 

● Security on an Access database is not very robust. While users can be given specific 

restrictions in more complex Access databases, it is easy to open the database file in 

another program and view the contents, including passwords. Since users must be able 

to access the file, it is vulnerable to unauthorized copying (Pineault 2016). 

● Most client-server databases provide logging of operations automatically. If an incorrect 

change is made to the database, when that action was performed and by who can be 

found in the log. Access does not automatically log changes; although this ability can be 

added manually (FMS 2010). 

 

A2.2 Enterprise Databases 

Enterprise level database solutions are designed for large data storage, high performance, and 

generally have a relational database schema. In this section we explore four popular Enterprise 

level database solutions, with an emphasis on the characteristics important for the FDAT design 

and architecture (Table A2.1). All four options could be used for FDAT since they have the 

ability to support simultaneous users and functionality for partitioning, as well as support for 

large table and file sizes (Table A2.1). Therefore, we will focus on the licensing and support for 

spatial data as their main point of difference.  
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Table A2.1. A comparison of Enterprise databases based on licensing, the ability to export 

shapefiles, the maximum number of simultaneous users connected to the database, maximum 

database table size, the ability to partition data, and file size limits. 

Database License 
Spatial 
Support 

Maximum # 
of Users 

Maximum 
Table Size* Partitioning 

File 
Size 
Limit* 

MySQL/ 
MariaDB 

Open 
source 

Yes, 
with 
GDAL 

Default 151, 
maximum 
10,000 
(MySQL 
2020b) 

No internal 
limit, except 
for MyISAM 
256TBⱽ 

Yes, for 
InnoDB and 
NDB 

No 
limit 

MS SQL 
Server 

Proprietary Yes, 
with 
GDAL 

Default 32767 
(Richardson 
2018) 

No internal 
limit 

Yes 16TB 

PostGreSQL Open 
source 

Yes, 
with 
PostGIS 

Default 100 
(PostGreSQL 
2020a) 

16TB, can be 
increased to 
64TB 

Yes No 
limit 

* Database file size is still limited by system configuration (e.g., a FAT32 filesystem will limit database files to 4GB). 
ⱽ Can be increased. 
+ Network database (NDB) 

 

MySQL 

Originally created in 1995 by MySQL AB, MySQL was purchased by Sun Microsystems in 2008, 

which was then taken over by the Oracle corporation in 2010 (Sarig 2019). Even after this 

acquisition, MySQL remains available for free and is open source. However, Oracle chooses to 

keep its own development decisions closed to the public (Sarig 2019). Additional support from 

Oracle can be purchased, as well as an Enterprise edition that includes tools suitable for the 

needs of large companies. A license must also be purchased to release MySQL with non-open 

source software (Stack Overflow 2018). 

MySQL comes with some support for spatial data built in (Table A2.1). However, their offering in 

the past was considered to be inferior to SQL Server and PostGreSQL combined with PostGIS 

(Stack Overflow 2014), and it was also slower for spatial queries. A representative from 

MariaDB also suggested that PostGIS (with PostGreSQL) was better for new projects that 

required spatial data (Holzgraefe 2016). MySQL 8.0 does include improvements to spatial 

support, such as choosing a spatial reference identifier or coordinate system for spatial data 

(Otwell 2018). Note that the third-party Geospatial Data Abstraction Library (GDAL; GDA/OGR 

Contributors 2020) library is required to export spatial data as ESRI shapefiles from MySQL. 

Pros: 

● Open source, can be modified as required and the modifications distributed for free; 
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● Different database engines available, such as MyISAM and InnoDB (DB-Engines 2020); 

and 

● Spatial data support is built in. 

 

Cons: 

● A commercial license is required if MySQL is to be included in the distribution of a non-

open source product (not relevant to FDAT); 

● Support from Oracle and Enterprise features must be purchased; 

● Dependent on Oracle development decisions, so new features are slow to appear; 

● Not as compliant with SQL standards as PostGreSQL (Bhatia 2019); and 

● Spatial data support features are considered inferior to that of SQL Server and 

PostGreSQL + PostGIS. 

 

MariaDB 

MariaDB is a version of the MySQL database, created in 2010 after the acquisition of Sun 

Microsystems by Oracle (Table A2.1). For the most part, MariaDB can function as a drop in 

replacement for MySQL, but with the added advantage of being open source so that it can be 

reviewed by the community (Sarig 2019). The description of MySQL spatial support also applies 

to MariaDB, except that MariaDB had full compliance with the OpenGIS standard version 10.1 

compared to MySQL (Holzgraefe 2016). 

Pros: 

● Unlike MySQL, it is not dependent on development by Oracle. 

● Spatial data support is greater for MariaDB version 10.1 compared to MySQL version 

5.7. 

 

Cons: 

● Enterprise features, 24/7 support, etc. must be purchased 

● Potential for divergence between MySQL and MariaDB in the future. 

 

Microsoft SQL Server 

Microsoft SQL server is specifically designed for easy integration with applications developed 

for the Windows platform, such as .net programs (Marsh 2017; Merenych 2019; Sarig 2019). It 

is a proprietary product and as such, cannot be modified by developers to better fit their needs. 

The licensing is also stricter and relatively expensive, with only a heavily restricted, single 

database available for free (Boston GIS 2010; Marsh 2017). However, SQL Server also makes 

use of Transact-SQL, an extension of regular SQL that provides extra features such as 

advanced processing of text, mathematical data and dates (Database Guide 2018). 
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Microsoft SQL Server is similar to MySQL as it includes support for spatial data out of the box. 

Also like MySQL, an external program such as the GDAL library is required to save spatial data 

as ESRI shapefiles. However, it has less spatial support features than PostGreSQL combined 

with PostGIS. For example, support for rasters (e.g., images) and functions for processing GIS 

data are lacking (Hsu and Obe 2019). 

Pros: 

● Made to interface with Microsoft .net programs 

● Transact-SQL provides additional features for queries not available in other databases 

● Better support for spatial data than MySQL. 

 

Cons: 

● Must purchase a license to use more than the restricted free version and/or more than 

one database; 

● Not open source, so cannot be modified if required to suit the application; 

● No ability to choose a different database engine (DB-engines 2020); and 

● Spatial support inferior to PostGreSQL + PostGIS. 

 

PostGreSQL 

PostGreSQL (PostGreSQL 2020b) or ‘Postgres’ was first developed in 1989 and is the oldest of 

the relational databases discussed here. It has the greatest compliance to SQL standards 

(Bhatia 2019), a large range of features, and full open sourced development, like MariaDB. This 

database remains the most advanced of all relational databases due to the rapid, open source 

development by the Postgres community (Bhatia 2019). 

Unlike the previous two databases, PostGreSQL does not come with support for spatial data on 

its own. Instead, the PostGIS extension (PostGIS 2020) is required to store and use spatial 

data. However, this is not a disadvantage; PostGIS is the most powerful offering for spatial 

databases, including the full OpenGIS standard and beyond (Django Project 2020; Holzgraefe 

2016). It also includes support for exporting spatial data to ESRI shapefiles without additional 

libraries like GDAL (Geographic Information Systems Stack Exchange 2013).  

Pros: 

● Open source, can be modified as required and the modifications distributed for free; 

● Better range of features, including enterprise level features such as data analysis, 

without requiring an enterprise license; 

● Greatest support for spatial data when used with PostGIS; and 

● Greater compliance with SQL standards (160 out of 179 standard features implemented) 

compared to MySQL Server/MariaDB. 

 

Cons: 
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● No ability to choose a different database engine (PostGreSQL Tutorial 2020) 

● Spatial support using PostGIS must be installed separately, unlike with MySQL and SQL 

Server. 

 

A2.3 Indexing and Partitioning 

With any choice of enterprise database, the creation of indexes and partitioning within a 

database design allow for greatly improved performance, depending on the nature of the 

queries performed. Indexing is intended to speed up the process of retrieving data from the 

database. When database tables are unindexed, queries on that table must traverse every row 

to determine which of those rows match the query’s conditions. Adding an index on a table 

column essentially allows that column to be sorted when the table is queried, decreasing the 

time needed for the query (Miller 2018). The FDAT web interface is a read-only experience, 

except when new data are uploaded by the user. Thus, indexes will be created to improve read 

performance, along with a clustered database environment splitting the read-only queries into a 

separate duplicate database to improve overall system performance and allow granular 

monitoring of processing resource requirements. 

The database tables containing point prediction information for the Columbia River Basin are 

expected to be large, in the order of millions of rows. Queries on this size table can take a 

relatively long time to complete and so partitioning will be used to improve performance. 

Partitioning splits a table into several logical sections, depending on the value of a column (e.g., 

date). If data from a certain year or month needs to be retrieved, only those partitions relevant to 

the query will accessed and examined, decreasing the time required to obtain results 

(Wilhelmsen 2015). 

All of the enterprise databases considered here support indexing and partitioning. However, it is 

difficult to determine a priori which indexing system will be most suited for the FDAT system, 

given that queries will be needed in both space (e.g., summarize over areas) and time (e.g., 

summarize data at one location). Thus, further database query performance tests will be 

undertaken in the FDAT implementation phase to help identify which indexes will best be used.  
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Appendix 3. Mapping functionality 

A web-based mapping provider is a service that allows a developer to view and manipulate data 

within a map, rather than having to develop their own solution from scratch. These services 

provide an Application Programming Interface (API), which provides access to common spatial 

functions such as placing elements on the map or calculating the distance between two points. 

Being web based, these maps can then be served to users in different locations and on various 

devices, such as a desktop PC, tablet or phone (Quinn and Dutton 2018). 

 

A3.1 Difference between providers and libraries 

There is an important distinction to be made between a mapping provider and a mapping library. 

A mapping library is a software product that supports the manipulation of maps, such as adding 

data, turning layers on and off, and zooming in and out, and so on. In contrast, a mapping 

provider provides access to a map layer itself, usually through its API. While some providers 

also provide their own libraries, such as Cesium and Mapbox, there are standalone libraries 

available like Leaflet and OpenLayers. These libraries still require a map provider before they 

can be used, and each library will only provide support for a subset of providers. 

 

A3.2 Mapping libraries 

CesiumJS 

CesiumJS is an open source mapping library developed by the creators of Cesium ion (Table 

3.1; Cesium 2020a). Features on a CesiumJS map can be associated with popups using the 

description tag in the code. This description can contain HTML code as well as plain text, so 

complex elements can be displayed using these popups such as graphs and figures. The 

visibility of features on the map can be toggled on and off, which allows certain map elements to 

be hidden. Features can also be assigned to a “data source” which itself can have its visibility 

toggled. It is also possible to drag elements around the map using this library, though it is not an 

inbuilt function (Stack Overflow 2017). There is also no native snapping function, but custom 

code could be developed to implement this in CesiumJS. 

The CesiumJS library can be used with a variety of mapping providers other than Cesium ion 

(Cesium 2020b), including Bing Maps (Microsoft 2020), Mapbox and OpenStreetMaps (Table 

A3.1; Cesium 2020c). Although it does not support ESRI shapefiles natively, it does support 

GeoJSON, KML or TopoJSON files. 

Pros: 

● Open source and can be modified as needed; 
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● Allows for popups that contain (complex) HTML; 

● Variety of mapping providers can be used;  

● Simple to hide and show features; and 

● Support for GeoJSON, KML or TopoJSON data formats. 

 

Cons: 

● No inbuilt dragging or snapping functions; and 

● Can be ongoing costs depending on the mapping provider (Section A3.3). 

 

Table A3.1. A comparison of mapping libraries and the characteristics relevant to FDAT, 

including whether the software is open source (versus proprietary), the map providers it 

supports, the existence of a native snapping function, the ability to enable or disable spatial 

layers in the view, and detailed popups, which allow contain complex HTML elements to support 

graphs and figures.  

Mapping 
Library 

Open 
Source 

Supported Map 
Providers 

Snapping 
Function 

Enable/ 
Disable 
Layers 

Detailed 
Popups 

CesiumJS Yes Cesium Ion, 
OpenStreetMap, Bing 
Maps, ArcGIS, Google 
Earth*, MapBox 

No native 
function for 
dragging and 
snapping 

Yes Yes 

ArcGIS API 
JavaScript 

No ArcGIS
+
 Present in 

version 3, but not 
4 

Yes Yes 

Leaflet Yes OpenStreetMap by 
default. Plugins 
available for Bing 
Maps, ArcGIS, Google 
Maps, and Mapbox^ 

Yes, through 
Leaflet.Snap 
plugin 

Yes Yes 

Mapbox GL 
JS 

Yes Mapbox No specific 

function# 

Yes Yes 

OpenLayers Yes OpenStreetMap, 
ArcGIS, Cesium Ion 
(with a library 
(OpenLayers 2019)), 
Bing Maps 

Yes Yes No 

* Requires a Google Earth Enterprise server. 
+ ESRI provides its own versions of OpenStreetMap. 
^ Official Mapbox plugin for Leaflet is depreciated after Mapbox GL JS development (Bradley 2016). 
# Other functions can be used to implement this functionality (Stack Overflow 2016a). 
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ArcGIS API for JavaScript 

The Environmental Systems Research Institute (ESRI) provides several solutions for creating 

web-based applications that display spatial data. ArcGIS Online provides tools for those with no 

programming experience to make maps embedded in web pages, or full “apps” using a 

selection of widgets. However, these do not allow extra code to be added for custom 

modifications and so its usefulness for FDAT is limited (ESRI 2020c). 

For developers, the ArcGIS API JavaScript (ESRI 2020a) can be used to create web 

applications using ArcGIS map services (Table A3.1). However, this API cannot be modified 

and as such, it is not an open source library (ArcGIS for Developers 2020a). The JavaScript 

library does include functions for snapping points to lines during editing, but this feature is only 

available in version 3 (ArcGIS for Developers 2018) and is not yet implemented in version 4 

(ArcGIS for Developers 2020a). The ability to move points is still available in version 4, so it is 

possible to write custom code to snap the points to nearby lines.  

Spatial data layers can also be added either from an online source or created from elements, 

such as a database within FDAT. These layers can be turned on and off, similar to CesiumJS. 

The ArcGIS library also supports widgets (i.e., extensions), which can support complex 

elements such as map popups (e.g., figures and charts) or tools for adding and editing points on 

a map (ArcGIS for Developers 2020a). Both versions 3 and 4 support the upload of ESRI 

shapefiles, as long as they are in a zip archive which includes all the associated files (GitHub 

2019a). A connection to the ArcGIS REST API is also needed because the process that sets up 

files for viewing requires functions on the server (ArcGIS for Developers 2018; GitHub 2019a). 

The ArcGIS API for JavaScript can be used with a free Essentials plan for developers of non-

revenue generating apps, but it is not available for government use. Instead a commercial 

deployment plan must be purchased for a monthly subscription fee. The Builders plan ($125 per 

month minimum) includes access to all ArcGIS APIs and software development kits (SDKs), 1 

million connections for basemaps and geocoding per month, and content hosting on ArcGIS 

servers for access, analysis and displaying on maps. It also provides 50 credits that can be 

exchanged for various services like routing, demographics and data storage. More importantly, 

it includes technical support from ESRI and access to additional tools such as the AppStudio 

(ArcGIS for Developers 2020c). 

Pros: 

● Support for uploading and displaying ESRI shapefiles in a zip archive; 

● A large selection of widgets can be added to a map, including editing tools; 

● Allows for popups that contain (complex) HTML code; and 

● Simple to hide and show features on a map. 

 

Cons: 

● Software is proprietary and so there is a cost to using it; 



 

85 
 

● JavaScript API cannot be modified and so is not open source; 

● Feature snapping is not yet implemented in version 4 or the API, but it was present in 

version 3; and  

● Only supports ESRI basemaps. 

 

Leaflet 

Leaflet is an open source JavaScript library for mapping, which is not associated with any 

particular mapping provider (Table 3.1). The library is intended to be lightweight and has the 

basic features for drawing maps on a webpage, but is also extendable with a large range of 

plugins contributed by other authors (Agafonkin 2019a). For example, there are plugins 

available for adding ESRI shapefiles (e.g., Leaflet.Shapefile) and geodatabases (e.g., 

Leaflet.FileGDB). 

Leaflet itself does not include the snapping functionality, but there are at least two plugins that 

add this functionality (Table 3.1). Leaflet.Geoman is a comprehensive plugin that provides many 

editing functions such as the ability to add and remove points, while Leaflet.Snap relies on other 

plugins to implement additional editing functionality. Leaflet also allows elements on a map to be 

grouped, as well as a simple way to control switching between basemaps and toggling layer 

visibility. Popups can be quickly added to elements and include HTML, so that complex popups 

including tables or graphs are possible (e.g., OneFishTwoFish 2019). 

By default, Leaflet draws maps using the open source OpenStreetMaps as the basemap. 

However, a suite of plugins make it possible to use other mapping providers, such as ESRI’s 

ArcGIS and Bing Maps (Agafonkin 2019b). Interestingly, Mapbox also used a modified version 

of Leaflet for their map service before developing their own library.  

Pros: 

● Open source and can be modified as needed; 

● Allows for popups to contain (complex) HTML; 

● Variety of different mapping providers can be used; 

● Simple to hide and show features using an inbuilt control; 

● Not tied to a paid mapping service like Cesium or ArcGIS; and 

● Many plugins available for additional features, such as snapping and uploading 

shapefiles. 

Cons: 

● Lightweight library means that many advanced features are relegated to third party 

plugins. 

● Leaflet has performance issues when displaying greater than 100,000 data points (Netek 

et al. 2019). 
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Mapbox 

As with Cesium and ArcGIS, the Mapbox (Mapbox 2020a) service provides its own library to 

embed maps into websites (Table A3.1). Originally, Mapbox was built as a plugin for Leaflet, but 

this is now deprecated in favor of their own library, Mapbox GL JS. This library is open source 

under the 3-clause Berkeley Software Distribution (BSD) license.  

Mapbox GL JS is specifically designed to work with styles created by Mapbox’s online tool, 

Mapbox Studio (Stack Overflow 2016b). It is intended to streamline the process of designing the 

basic properties of a map, including the color of land areas, font, color, position and orientation 

of labels, and other elements. Style can also vary based on zoom level. Maps are rendered on 

the client side using WebGL (Mapbox 2020d.). The Mapbox GL JS library also supports popups 

containing HTML elements, meaning that a Mapbox map can show tables or graphs. Creating a 

control to hide and show layers is also possible; albeit not as simple as Leaflet’s 

implementation. Mapbox does not include the snapping functionality, but it is possible to write 

custom code to do this (Stack Overflow 2016a). 

Mapbox GL JS is intended to work with Mapbox basemaps, which include four core sets of data 

referred to as tilesets. These include Streets, which contain street data and administrative 

boundaries based on OpenStreetMap; Outdoors containing elevation, terrain, and roads and 

natural features; Satellite imagery from various sources; and continually updated Traffic 

information shown on the Streets tileset (Mapbox 2020b). 

Pros: 

● Various map data tilesets available; 

● Online tool Mapbox Studio to allow for maps to be themed as desired; and 

● Allows for popups that contain complex HTML. 

 

Cons: 

● By default, library requires a Mapbox account for an access token, which means it is 

subject to Mapbox’s usage and payment conditions; though using Mapbox GL JS 

changes how pricing works; 

● Uses Mapbox basemaps only; and 

● No inbuilt snapping function. 

 

OpenLayers 

OpenLayers is another open source library (under 2-clause BSD) which, like Leaflet, is not tied 

to a particular mapping provider (Table A3.1). Layer visibility can be easily toggled using a one 

line function, and so hiding and showing layers is simple after adding the elements to different 
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layers. While OpenLayers does not provide an inbuilt control for changing layer visibility on the 

map, the addition of custom controls could be tailored to do this.  

Strictly speaking, OpenLayers does not directly supply the functionality for popups. Instead, they 

are technically overlays, which are triggered when the user clicks on elements. However, there 

are tutorials that show how to implement this functionality on the OpenLayers website. Unlike 

the other mapping libraries reviewed here, snapping is supported directly, meaning that a plugin 

is not required for this functionality. 

The OpenLayers library supports several map providers natively, such as ArcGIS (for images), 

Bing Maps and OpenStreetMaps (OpenLayers 2020). Mapbox maps can also be used in 

OpenLayers through a generic API call (Mapbox 2020e) and there is an additional library 

available for integration with Cesium ion (OpenLayers 2019).  

Pros: 

● Not tied to a proprietary mapping provider and a variety of different mapping providers 

can be used; 

● Simple to show and hide layers; and 

● Snapping features included. 

 

Cons: 

● No inbuilt control for toggling layers; 

● Popups are supported but are more complicated to define compared to some other 

libraries; and 

● OpenLayers has performance issues when displaying datasets with more than 100,000 

data points (Netek et al. 2019). 

 

 

A3.3 Mapping providers 

Most data displayed on FDAT will be stored on an FDAT server, along with scripts that process 

data, and so most additional services that map providers offer are not required. Instead, the 

main function of the mapping provider will be to provide basemaps that form the background 

setting so that users can orient themselves on the map easily. Of the four mapping providers we 

reviewed (Table A3.2), all but OpenStreetMaps provides a wide variety of basemaps that would 

be suitable for FDAT (Figures A3.1-A3.4). Thus, the main aspect distinguishing the different 

providers is the cost (Table A3.2). Some providers are free, or free until the number of FDAT 

users accessing and viewing maps exceeds a threshold, while others have a fixed price per 

month.   
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Table A3.2. Mapping providers, billing methods, licensing, and cost estimate in US dollars. 

Mapping Provider Billing method Licensing Cost estimate 

Cesium ion Fixed price per 
month 

Commercial  $149+ per month 

ArcGIS Fixed price per 
month 

Commercial Builders License: 
$125 per month 

Mapbox Number of requests 
per month 

No separate 
licensing  

Cost varies with use 
but free for low 
volume services 

OpenStreetMap Free Open source Free 

 

 

Cesium ion 

 

 

Figure A3.1. An aerial (left panel) and road (right panel) basemap offered by Cesium ion. 

 

Cesium ion (Cesium 2020b), like ArcGIS, is more than a proprietary software service. The 

Cesium ion engine specializes in the provision of hosted 3D data streaming services, which 

delivers uploaded data assets as a tiled service. This ensures that a responsive performance is 

maintained for the end user, while also handling the data delivery, caching and construction of 

the underlying tiled 3D and geospatial data. Commercial plans are available at a fixed price per 

month (Table A3.2; Cesium 2020d). Note that there is a free Community plan available, but 

government agencies do not qualify for it. All commercial plans offer support via email, and 

depending on the plan, higher limits for data streaming, and the use of Bing Maps imagery and 

geocoding. Cesium ion also provides customized payment plans, which are directly negotiated 

with their sales team (Cesium 2020d). Cesium ion does provide access to 5000 free Bing Maps 
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sessions as part of the fixed monthly price (Table A3.2; Microsoft 2020). However, Bing Maps 

and 3D visualization are not critical to the development of FDAT. For example, Bing Maps can 

also be accessed and used directly, without a license for Cesium ion. In addition, FDAT does 

not currently utilize 3D visualization; although the use of Cesium ion would provide the 

opportunity to deliver 3D visualization in the future. (Figure A3.1).  

 

ArcGIS 

 

 

 

Figure A3.2. Four basemaps offered by ArcGIS including satellite with vector overlay (top left), 

topographic vector (top right), National Geographic style (bottom left) and the streets vector 

(bottom right). 

The Builders commercial plan (ESRI 2020b) is required for use with the ArcGIS API JavaScript 

mapping library and the plan includes access to ESRI basemaps (Table A3.2). There are a 

large number of ESRI basemaps available for use in the ArcGIS API JavaScript (ESRI 2020d), 

including their own version of OpenStreetMap, topographic basemaps, and a National 

Geographic style layer, among many others. However, a license is needed to use ESRI 

basemaps.  
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Mapbox 

 

Figure A3.3. The satellite (left) and streets (right) basemaps, or styles, offered by Mapbox.  

 

The Mapbox provider provides a large suite of basemaps that would be suitable for FDAT, 

including satellite imagery, terrain maps, and street maps (Mapbox 2020b). Unlike some of the 

other mapping providers, Mapbox maps can be used with Mapbox GL JS or another mapping 

library. Another advantage is that Mapbox pricing is based on the number of requests, rather 

than a fixed price per month (Table 4.2; Mapbox 2020c). The way in which the requests are 

counted depends on how the service is being accessed. If the Mapbox GL JS library (≥ version 

1.0.0) is being used, each map load is counted. A map load occurs when a map in the library is 

initialized, and requests tiles from the map provider service. No additional requests (and 

therefore, costs) are counted when zooming and panning the map or toggling layers. A map 

load is only considered active for 12 hours, and so maps viewed for longer than 12 hours count 

as a new map load. Up to 50,000 requests are provided for free each month, with the next 

50,000-100,000 requests costing $5, 100,000-200,000 requests costing $4, and an additional 

$3 for every 100,000 requests after that (Mapbox 2020c). 

If the service is accessed through an older version of Mapbox GL JS or a different mapping 

library, such as Leaflet, the number of tile requests is measured for pricing (Mapbox 2020c). 

Therefore, scrolling or zooming on the map increases the number of requests. In addition, raster 

and vector sources are counted separately, and unless tile sources are composed using 

Mapbox Studio, the number of requests will increase with multiple layers of Mapbox tiles. 

However, vector and static tiles (i.e., tiles being generated from GL styles) are free up to 

200,000 requests, and raster tiles are free up to 750,000 requests (Mapbox 2020c). 
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OpenStreetMap 

 

Figure A3.4. A map using OpenStreetMap as the provider, viewed through the Leaflet library. 

Adapted from an example on Switch2OSM (2020). 

 

OpenStreetMap (OpenStreetMap Contributors 2020) is supported by the mapping libraries 

discussed so far and is a default for Leaflet. Unlike the previous three map providers, 

OpenStreetMap is open source and can be used for free (Table A3.2). There are only two 

conditions; first, correct attribution must be displayed on the map and second, modifications to 

the maps must also be distributed using the Open Data Commons Open Database License. 

Although the name implies street maps, the maps include other features such as country and 

state boundaries, parks, rivers, bus stops and buildings. In some cases, the data are not 

complete due to the open source nature, but missing features can be added by anyone so that 

the maps are continually improved through community input. However, OpenStreetMap does 

not provide any other services, and more importantly, does not provide satellite imagery. If 

those are required, then one of the mapping libraries should be used; though OpenStreetMap 

can be used as an alternate basemap. 

It is also important to note that while OpenStreetMap tiles and data are free, access to the tiles 

from their servers are not (OpenStreetMap Foundation 2020). For production use, either a copy 

of the OpenStreetMap database must be downloaded and rendered on servers, or another 



 

92 
 

service that provides the tiles needs to be selected (Switch2OSM 2020). For example, ESRI 

provides a basemap using OpenStreetMaps tiles. 

 

A3.4 Graphing libraries 

Visual data summaries (i.e., graphs) of data over time form an important aspect of the 

interactive web mapping interface. All of the mapping libraries we reviewed support popups with 

HTML content and so there are issues with compatibility between he graphing and mapping 

libraries; though there will be differences in how a graph is shown in each library. Therefore, the 

graphing library can be selected based on graph appearance and the familiarity of the developer 

with each library. 

 

Chart.js 

Chart.js is designed to make implementation simple, while also offering flexibility in the way 

graphs are rendered. There are many different graph types that can be used, such as the 

regular bar, line and pie graphs, and more uncommon types like radar and bubble graphs 

(Figure A3.5). Some graph types can also be combined into a single graph. In addition, graphs 

automatically scale to fit the browser window as it is resized. 

There are several different configuration options in Chart.js related to graph characteristics such 

as the color of data sets, the location of the legend and the type of axis scale. The graphing 

library includes tooltips for data points as well, and the content of these can be modified, so the 

uncertainty value of predictions can also be displayed with predictions. 

To create a graph, a canvas HTML element is required, so popups on the map will need to 

include such an element to display graphs from this library. Finally, Chart.js is open source 

under the MIT license and so modifications are allowed if required (Chart.js 2019). 
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Figure A3.5. A selection of graphs implemented using Chart.js (Chart.js 2019). 

 

D3.js 

D3.js is a general library used to add data into webpages, rather than a dedicated graphing 

library (Figure A3.6). Nevertheless, D3.js provides a suite of tools to draw graphs since they are 

one of the most common ways to visualize data. D3.js provides a great deal of control over 

elements created and selected on a web page, as well as attributes such as their color. Thus, it 

can potentially be used to create unique custom graphs that also include functions such as 

zooming and panning; though the process of doing so may be complex. 

The D3.js library does not directly support tooltips on the data points within graphs it creates, 

which could be used to display uncertainty estimates along with predictions. However, this 

functionality can be achieved using alternative methods such as creating an element to show 

and position data when the user hovers or clicks on part of the graph. Graphics can also be 

added to different types of elements on a webpage, so D3.js is not restricted to div or canvas 

HTML elements, like the previous two libraries (Bostock 2013). 
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Figure A3.6. A selection of graphs generated using D3.js (Bostock 2020). 

 

Plotly.js 

Plotly.js is another open source offering, that has been built on other libraries such as D3.js, and 

is designed to draw SVG elements. Unlike Chart.js, Plotly.js can create 3D graphs as well as 

regular 2D graphs. Plotly.js also makes it simple to create a basic graph, while offering many 

additional customization options (Figure A3.7). There are also advanced options available that 

are not present in Chart.js (e.g., a selection of scientific and financial charts). Drop down menus 

can be added to graphs so that the user can select which data set to show, lasso selections can 

be used to obtain information about certain points, and a subplot can be added that provides 

additional or more detailed data. Plotly.js provides configurable popups as well, so the 

uncertainty value can be shown for prediction. However, a div HTML element is required, so 

map popups will need to include this element to display graphs from this library (Plotly 2020). 
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Figure A3.7. A selection of graphs implemented usingPlotly.js (Plotly 2020). 
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Appendix 4. Spatial data processing in R 

In the prototype FDAT developed in Phase 1 of the project (FY18) the spatial data processing, 

modeling and prediction were undertaken in two steps using both proprietary and open-source 

software. Previously, the Spatial Tools for the Analysis of River Systems (STARS) tools 

(Peterson and Ver Hoef 2014), developed as ESRI ArcGIS (ESRI 2019) custom tool sets, coded 

in Python, for ArcGIS versions 9.3- 10.72, were used to generate the spatial, topological, and 

attribute information needed to fit spatial stream-network models to data collected on river 

networks. However, there are often changes in internal function syntax as new versions of 

ArcGIS are released, which means that they are rarely back compatible. In addition, ArcGIS is 

proprietary software and a full Advanced license is needed to run the STARS tools. To address 

these issues, we made the decision to convert the core STARS tools to scripts on the osSTARS 

package that can be executed in R statistical software (R Core Team 2020), which is free, open 

source software. In addition to cost savings, using open source software allows the pre-

processing environment to be held relatively static within FDAT and maintained indefinitely, 

which significantly reduces ongoing maintenance. Finally, all of the statistical modeling and 

prediction takes place in R, creating a seamless data-analysis pipeline within one software 

product.  

 

A4.1 osSTARS 

The osSTARS package replicates the core functionality of the STARS custom toolkit needed to 

support the FDAT. Five new functions were created that have a 1:1 relationship with those 

found in STARS (Table 4.1). These functions convert the streams and observed sites to a 

Landscape Network (LSN) structure, which is the primary data format in STARS. There are also 

functions to calculate the upstream distance (upDist) from the stream network outlet to the 

upstream node of each line segment and to each individual observed site location. Additive 

function values are needed to fit spatial stream network models using the tail-up covariance 

function and these are generated using the additive.function function in the SSN package for R 

(Ver Hoef et al. 2014). Finally the pre-processed data are exported to a .ssn object, which is 

logically identical to .ssn objects created using the STARS tools. Thus, no data processing 

needs to be done to the .ssn object created by the CreateSSN_Obj function before it is imported 

into R using the importSSN function in the SSN package (Ver Hoef et al. 2014). 

 

 

 
2 https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/latest_releases.html  

https://www.fs.fed.us/rm/boise/AWAE/projects/SSN_STARS/latest_releases.html
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Table 4.1. The relationship between STARS tools and equivalent functions within the osSTARS 

package. osSTARS functions are listed in the order that they will be called within FDAT. 

STARS Tool Name osSTARS Function Name 

Pre-processing 
Polyline to Landscape Network 
Snap Points to Landscape Network 

 
polyline_to_network 
snap_pts_network 

Calculate 
Upstream Distance – Edges 
Upstream Distance – Sites 

 
getUpstreamDist_Edges 
getUpstreamDist_Sites 

Export 
Create .ssn object 

 
CreateSSN_Obj 

  

The same topological conditions for streams required in the STARS tools must also be met in 

the osSTARS package in order to accurately generate hydrologic distances and describe spatial 

relationships; namely that the shapefile does not contain converging stream nodes, complex 

confluences, and or diverging nodes (Peterson and Ver Hoef 2014). STARS contains a number 

of tools that help users identify these topological conditions so that they can be removed, but 

these are not needed to run the FDAT since the stream network will be static and will not vary 

by user. Therefore, we did not include this functionality in the osSTARS package.  

 

polyline_to_network 

The polyline_to_network function converts a shapefile representing streams into a network 

structure that contains the same spatial information as the LSN utilized by the STARS tools 

(Peterson and Ver Hoef 2014). If it runs successfully, it produces a shapefile for nodes and 

edges, and three CSV files containing node-to-node, node-to-feature, and feature-to-feature 

relationships (i.e., nodexy.csv, noderelationships.csv, and relationships.csv).  

 

snap_pts_network 

The snap_pts_network function is used to incorporate observation sites into the network 

structure generated by the polyline_to_network function. If the sites do not lie directly on the 

stream network, they are moved to the nearest location on a stream segment (i.e., “snapped”) 

and the coordinates for the point feature are recalculated and added to the sites shapefile 

attribute table. Two additional columns are also added to the sites attribute table; the rid column 

contains the reach identifier for the line segment the site lies on, while the ratio column contains 
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the proportional distance of the site location from the downstream node of the line segment 

compared to the total length of the line (Peterson and Ver Hoef 2014). These two pieces of 

information are important because they describe which line segment each site resides on and 

where exactly on the segment the site lies.  

 

getUpstreamDist_Edges and getUpstreamDist_Sites 

The getUpstreamDist_Edges and getUpstreamDist_Sites functions are used to generate 

information needed to calculate hydrologic distances between sites along the stream network 

(Peterson and Ver Hoef 2014). The getUpstreamDist_Edges function calculates the distance 

from the stream outlet (i.e., most downstream location in the stream network) to the upstream 

node of each line segment. The values are then stored in a new column called ‘upDist’ in the 

edges shapefile attribute table. The getUpstreamDist_Sites function calculates the distance 

between the stream outlet to each site location based on data in the upDist column of the edges 

attribute table, along with information contained in the rid and ratio columns of the sites attribute 

table. A new upDist column is added to the sites attribute table and populated with the upstream 

distance values.   

 

CreateSSN_Obj 

Once the functions for pre-processing and calculating new data have run successfully (Table 

4.1), the data must be converted into a format that can be imported using the SSN package (Ver 

Hoef et al. 2014) in R. The CreateSSN_Obj function is used to convert the LSN structure into a 

.ssn object as described in Peterson and Ver Hoef (2014). First, a  new directory is created, with 

the naming convention lsn-name.ssn (i.e., lsn.ssn), which is referred to as the .ssn object. Next, 

a network identifier (netID) is assigned to the edges, observed sites, and prediction sites 

attribute tables. A location ID (locID) and a unique point identifier (pid) are assigned to the 

observation and prediction sites attribute tables in order to distinguish between repeated 

measurements at a single location. Binary identifiers (binaryID) are assigned to each line 

segment, which are stored along with the rid value as comma delimited text files in the .ssn 

object, with a separate file for each network. The naming convention for these files corresponds 

to the netID (i.e., net1.dat, net2.dat, etc.). Finally, the edges, sites, and prediction sites 

shapefiles are exported to the new .ssn object directory. 

 


