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CHAPTER 1. Formalize Information Requirements for Drone Assisted 

Stream Habitat (DASH) Protocol 

 

Coordination between federal, state, private, and tribal agencies has resulted in development of remote 

stream monitoring techniques on several related, but independently developed tracts. Over the last year 

(and several years prior) we have focused on sharing knowledge and collaborating on hardware and 

processing solutions for initial drone utilization. Through communication and collaboration, the community 

has expressed several needs necessary for development to better aide the community in employing drone 

derived products. The major barriers to entry expressed through multiple channels are; lack of standardized 

protocol for habitat monitoring and drone setup and operation including standardized metadata recordings, 

lack of centralized database/repository for viewing and sharing previously collected imagery, lack of 

information and tools specific to processing imagery for stream-habitat mapping and modelling, among 

others.  

While the goals of drone supported monitoring may vary between agencies, the core principle of 

collaboration and coordination amongst groups should remain intact. The first step identified within our 

collaborations is to develop and then apply a universal protocol for habitat data collection. The second step 

is to support the data collection with a centralized repository and toolkit for imagery processing. The third 

is to build a space for collaboration amongst the developer community to capitalize on the ever-evolving 

machine learning, deep-learning, artificial intelligence, and computer science fields. While we have strived 

to ensure that we stay ahead of the curve, things like autonomous vehicle development are continuing to 

push imaging technology forward at a very rapid pace. 

Plans for summer 2021, for multiple agencies, likely include finalizing protocols and survey data collection 

forms, finalize drone deployment protocols, continue to streamline the data pipeline and QA/QC tasks, and 

continue development on imagery processing and post-processing tools. The goal of winter/spring would 

be to finalize a joint protocol between multiple agencies to ensure data integrity and availability and then 

deploy the finalized protocol in the summer of 2022. Eventually, we hope that a single, drone-supported 

protocol can be adopted and deployed across the entire Columbia Basin watershed. Drone supported habitat 

monitoring could then be utilized across the basin for a wide variety of problems including status and trend 

monitoring, prioritization, effectiveness monitoring, etc. 

Biomark’s collaboration with the fisheries research and drone community has culminated in helping to 

reboot and participate in the Pacific Northwest Aquatic Monitoring Partnership’s (PNAMP) remote sensing 

forum. The goals of the forum are to provide expert knowledge, guidance, and a space for collaboration. 

Biomark hopes to add to the forum with expert knowledge, protocol development, processing tool 

development, and data hosting services/centralize imagery repository. The outreach within the program will 

also allow for the acceptance of a standardize or semi-standardized methodology across the basin and 

hopefully ensure basin-wide buy-in of remote monitoring. The goal of all remote monitoring support by 

either drones or satellite derived products will be to collect more data, with higher confidence, across a 

much great spatial domain, while removing observer bias and crew to crew variability. 

  



CHAPTER 2. PPK GPS Workflow and Automated Post-Processing 

 

INTRODUCTION 

The development and commercialization of small Unmanned Aerial Systems (sUAS, commonly drones) 

has fostered significant interest in their application for environmental research and monitoring. Recent and 

ongoing advancements in areas such as battery technology, structure from motion analyses, component 

miniaturization, and sensor refinement make UASs an increasingly popular tool. UASs are now 

commonplace among a variety of industries including forestry (Dainelli et al. 2021), precision agriculture 

(Tsuoros et al. 2019), archaeology (Adamopoulos and Rinaudo 2020), oil and gas (Yu et al., 2019), urban 

planning (Noor et al. 2018), and environmental research and monitoring (Manfreda et al., 2018) to name a 

few. Drone applications in riverine environments more specifically have accelerated in development and 

over the last decade. Measuring flow and velocity via drone is now a reality (Fujita et al. 1997, Tauro et al. 

2015, Detert et al. 2015), in addition to determining water levels and water surface elevations (Ferreira et 

al. 2017, Bandini et al. 2017), and mapping vegetation both terrestrial and aquatic (Flynn et al. 2014). This 

review highlights the advancements of UAS technology in the environmental research field specifically, 

with recommendations for broadscale, standardized applications.  

i. UAS applications in environmental research and monitoring 

Remote sensing addresses a host of obstructive factors by facilitating safer (in comparison to piloted aerial 

surveys; Sasse et al., 2003), and less expensive data collection across expansive regions, remote and hard-

to-access sites, cryptic and migratory species, and species sensitive to observer bias; at varying levels of 

resolution (Jones et al., 2006; Anderson and Gaston, 2013; Whitehead et al., 2014; Chabot and Bird, 2015; 

Linchant et al., 2015; Xiang et al., 2019). Advances in remote sensing technologies, particularly the 

refinement of sensors such as hig-resolution multispectral cameras, are continually progressing the ability 

to manage environmental resources effectively and efficiently. 

Given the need for timely, high-resolution, and multispectral imagery, UAS have proliferated in the field 

of environmental monitoring and research (Manfred et al., 2018). Drones, in particular, are ideal for 

dynamic sites that require frequent re-sampling (Mullerova et al., 2017b). For example, drone-based 

invasive species monitoring is a common method for precise, rapid assessments of vegetation health and 

make-up, information necessary for appropriate management (Calviño-Cancela et al., 2014; Hill et al., 

2017; Mullerova et al., 2017a). Additionally, the increased resolution of low-altitude imagery poses 

significant benefits to certain applications such as capturing variations in vegetative health (Assmann et al., 

2020), improved imagery classification (Yang et al., 2019), and population monitoring (Wang et al., 

2019),among others. UAS also tend to outperform satellites in variable weather conditions, such as being 

able to capture imagery below cloud cover and at various times throughout the day. Van der Wal et al., 

2012, demonstrated that the probability of obtaining usable imagery from UAS was at least double, if not 

nearly triple, that of satellite imagery.  

ii. Advantages, challenges, and future directions 

Achieving broadscale adoption of UAS imagery in environmental monitoring requires advancement on a 

number of challenges. First, sensor calibration and error are common factors that may distort raw data, and 

thus implications from monitoring efforts (Gauci et al., 2018; Jones et al., 2010). Tools to account for 

minute errors in georeferencing, pixel deformation, and radiometric calibration are becoming more 

widespread and accessible, though increased education regarding their effect on data (and thus, 



interpretation) is critical to ensuring that practitioners are accounting for this error. Data storage, processing 

requirements, and overall complexity of analysis is another common challenge faced in UAS adoption 

(Zimudzi et al., 2019). Imagery analysis and, in particular, the automation of data extraction from imagery 

have come a long way; however, making tools accessible and understandable to researchers remains a 

significant barrier to entry (Weinstein, 2017). Perhaps the most pervasive challenge in relevant, broadscale 

application of UAS to environmental research and monitoring is a lack of standardized operating procedures 

at all steps of the scientific process. Despite the many literature reviews heralding the utility of UAS, there 

is currently no centralized framework for research studies involving drones (Singh and Frazier, 2018; 

Manfreda et al., 2019; Tmusic et al., 2020; Dainelli et al., 2021). In fact, most of the challenges described 

above could be addressed with a centralized workflow to guide practitioners in the accurate, repeatable 

collection of imagery. This also has the potential to solve the issue of fragmentation, thereby fostering 

collaboration and data sharing among disparate organizations. 

The Columbia Basin, more specifically, has seen many research groups from local, state, and private entities 

utilizing UAVs for Salmon and steelhead conservation; however, no centralized and/or coordinated effort 

has been developed. For example, UAVs lack in comparison to the many developed repositories and 

centralized efforts that are observed in satellite imagery applications, partly due to the infancy of the 

technology, but also due to lack of funding (Manfreda et al. 2018). The Columbia Basin provides an ample 

opportunity to apply a satellite-like approach to UAV data management, tool development, standardization, 

and coordination. Advantages to a basin-wide approach would include, but not limited to, data permanence 

in near real-time (Manfreda et al. 2018), improved field safety, efficiency, and accessibility (Sasse 2003, 

Xiang et al. 2019), and data flexibility (Xiang et al. 2019). Cost savings, when compared to other techniques 

must also be considered and UAVs have proven to be one of the most efficient data collection instruments 

available (Whitehead et al. 2014) and although UAVs have many promising attributes, severe limitation 

still exists. 

Major challenges in UAV applications primarily arise after data collection. Processing and metric 

generation can be highly impacted by sensor calibration and error characterization, both spatially and within 

the reflectance of the object being imaged. Understanding how to correct for spatial uncertainty will lead 

to a more widely understood technology and a broader adoption. Other challenges after data collection 

include image registration, correction, and reflectance calibration (most notably radiometric). To further 

the challenges, thus far there has been no centralized study design or drone specifications, as well as no 

repository to store image metadata, resulting in a fragmented effort across the basin. This review seeks to 

synthesize current trends and recommendations regarding (i) platform and sensor choice, (ii) camera 

settings and UAS control software, (iii) flight configuration, (iv) georeferencing, and (v) post processing 

automation. Further, we provide recommendations specific to research and monitoring efforts for Pacific 

salmonids and their habitat. 

METHODS 

A comprehensive literature review was conducted on the use of UAS in environmental monitoring and 

research. Challenges in broadscale applications were synthesized from existing literature reviews (Singh 

and Frazier, 2018; Manfreda et al., 2019; Tmusic et al., 2020; Dainelli et al., 2021) and further investigated. 

Provided for each perceived challenge are background, suggested resolutions from the literature, use case 

examples, and recommendations for specific application in riparian habitat research and monitoring.  

We also committed time to testing and developing several image classification algorithms and an automated 

centerline generation tool applicable to both UAV and satellite imagery. Algorithm development included 

testing of both a pixel-based (random forest) and a deep learning, object-based approach for imagery post-



processing and metric development. We applied the deep learning model to a very complex and downfall 

ridden site in Grouse Creek, a tributary to the Secesh River in central Idaho. In addition, we utilized both 

multispectral and red, green, blue (RGB) imagery to test an automated classification algorithm which 

leverages a random forest model with regional components.  

RESULTS 

(i) Platform and sensor choice 

Fixed wing and rotary are the main options for UAS platforms. Fixed wing UAS tend to be more energy 

efficient, thus able to achieve greater spatial coverage. However, they are unable to operate at low altitudes, 

slower velocities, or in hovering, which can cause increased data uncertainty, especially for multispectral 

sensors (Singh and Frazier, 2018). In contrast, rotary wing (or vertical take-off and landing, VTOL) UASs 

are more commonly observed throughout the literature, likely due to ease of operation and flight path 

flexibility (Pádua et al., 2017; Singh and Frazier, 2018). Aside from user considerations, the major tradeoff 

appears to be between spatial coverage, in which fixed wing UAS present a primary advantage, and 

resolution, in which rotary wing are more favorable.  

Most commercially available, off the shelf UAS currently include a red-green-blue (RGB) complementary 

metal-oxide-semiconductor (CMOS) sensor, which has demonstrated applications for a variety of 

environmental analyses (see Manfreda et al., 2019 for a comprehensive list of UAS borne sensors and 

applications). The incorporation of multispectral (e.g., near-infrared, short wave infrared, thermal infrared) 

and hyperspectral (the collection of many narrower bands, typically between visible light and near infrared) 

sensors are becoming more common, particularly in environmental monitoring applications (Laliberte et 

al., 2011; Lu et al., 2017). For example, data from multispectral sensors have proven success in vegetation 

monitoring given the ability to evaluate normalized difference vegetation index (NDVI) and track variables 

such as growth, infection, and stress (Dash et al., 2018; Cardil et al., 2019; Stow et al., 2019). Hyperspectral 

imaging can be more challenging, given the necessary calibrations and corrections; however, hyperspectral 

sensors have been shown to perform with increased accuracy in estimating leaf carotenoid content in 

vineyards (Zarco-Tejada et al., 2013), bark beetle infestation (Näsi et al., 2015), and ground cover and 

vegetation discrimination (Mitchell et al., 2012).  Advances in light detection and ranging (LiDAR) 

technology also make it a candidate for UAS application. LiDAR tends to produce more accurate three-

dimensional data and has the added benefit of being able to penetrate water and the canopy (Tonina et al. 

2019, Hyyppä et al., 2020). Advances in multispectral and hyperspectral imaging, along with Structure 

from Motion (SfM) techniques, allow for the generation of end products similar to LiDAR, where the main 

tradeoff is between cost and (particularly 3D) accuracy (Yin et al., 2019; D’Oliveira et al., 2020; Hyyppä 

et al., 2020).  

Significant study design efforts should take place prior to platform selection. There are tradeoffs between 

each sensor and planning for error should be in place; multispectral, hyperspectral, and LiDAR data are 

particularly susceptible to errors in calibration. However, much work has been invested into multispectral 

imagery processing and calibration (see Micasense Altum Processing). In general, using multiple sensors 

in combination increases the accuracy of the end products (Dinlus et al., 2012; Komarek et al., 2018; Sankey 

et al., 2017); though, added steps will be necessary to spatiotemporally rectify the disparate bands. Platform 

and sensor choice fundamentally come down to the objectives of the study. Tmusic et al., 2020, collated a 

comparison of available options to consider during the study design phase (Table 1, Table 2). 

Table 1: (Dis)advantage of different platforms. From Tmusic et al., 2020. 

Platform Advantages (+) and Disadvantages (-) Flight Time/Coverage 

https://youtu.be/ywu7yzj19I4


Rotary-wing 

+ flexibility and ease of use 
+ stability 
+ possibility for low flight heights and low speed 
+ possibility to hover 
 
- lower area coverage 
- wind may affect the vehicle stability 

Flight time typically 20–40 
min 

 
Coverage 5–30 x 103 m2 

depending on flight altitude 

Fixed-wing 

+ capacity to cover larger areas 
+ higher speed and reduced time of flight execution 
 
- take-off and landing require an experienced pilot 
- faster vehicle may have difficulties in mapping 
small objects or establish enough overlaps 

Flight time up to hours 
 

Coverage e.g., >20 km2 
depending on flight altitude 

Hybrid VTOL 
(Vertical 
Take O 

 and Landing) 

+ ability to hover, vertical take-off 
 and landing 
+ ability to cover larger areas 
 
- complex systems mechanically (i.e., tilting rotors 
or wings, mixed lifting and pushing motors) 

Flight time up to hours, but 
usually less than fixed 

Wings 
 

Coverage x 106 m2 

 

Table 2: Type of sensors mounted on UAS and their possible applications. Adapted from Tmusic et al., 2020. 

Sensor Type Specifics Main Applications 

RGB Optical aerial photogrammetry, SfM-based 3D modeling, 
change detection, fluid flow tracking 

Multispectral Multiple wavelengths vegetation mapping, water quality, classification studies 

Hyperspectral Overlapping, contiguous 
bands; analyzing the 
shape of the spectrum 

vegetation mapping, plant physiology, plant 
phenotyping studies, water quality, minerals mapping, 
pest-detection 

Thermal Brightness surface 
temperature 

thermography, plant stress, thermal inertia, soil water 
content, urban heat island mapping, water temperature, 
animal detection. 

LiDAR Surface structure 3D reconstruction, digital terrain mapping, canopy 
height models, plant structure, erosion studies 

 

(ii) Camera settings 

Regardless of sensor choice, a number of steps must be taken ensure that the data collected are usable and 

produce meaningful (i.e., accurate) results. Camera settings are particularly important for Structure from 

Motion (SfM) applications, such that pixel matching is suggested to be the primary factor in 

photogrammetry and post processing (Gruen, 2012). Pixel matching directly affects the photo alignment 

and, subsequently, tie point success and point cloud density. Matching pixels is primarily a function of 

resolution, illumination, and environmental complexity (Mosbrucker et al., 2017). In fact, increasing the 

accuracy of pixel matching has been demonstrated to increase point density by two orders of magnitude 

(Smith et al., 2016).  

Camera technology has advanced significantly and many consumer grade, off the shelf cameras can achieve 

favorable SfM results. The two intrinsic factors thought to have the greatest effect on maximized data 

density are sensor resolution and dynamic range (Cao et al., 2010). Resolution is defined by the number of 

pixels (or more likely, megapixels, MP) that a sensor is capturing- effectively. The minimum suggested 

sensor resolution for SfM is 16MP, ensuring that the there is no anti-aliasing filter, which can cause 

unwanted artifacts (Mosbrucker et al., 2017). While resolution determines the quantity of data being 



captured, dynamic range describes the quality of data in regards to luminance. High dynamic range sensors 

are able to sense a broader spectrum of pixel luminance, helping to prevent data loss in very bright or very 

dark areas; a minimum 14-bit non-linear analogue-to-digital convertor is recommended for SfM 

(Mosbrucker at al., 2017).  

In addition to sensor settings, physical properties of the camera, including lens shape and shutter type, can 

have significant impacts on SfM accuracy. Lens dimensions directly affect the focal length and, thus, the 

optical properties in conjunction with the sensor size. Small focal lengths (wide-angle, fish-eye), increase 

field of view but are subject to increased radial distortion at the edges of the image (Mosbrucker et al., 

2017). However, wide angle lenses can still be used in SfM and may be an ideal option for rapid monitoring 

that do not require as high-resolution (Zhang et al., 2019).  

(iii) Flight configuration 

In addition to pre-flight sensor choice and calibration, the mechanics of the flight will have significant 

effects on the imagery collected. Factors such as altitude, velocity, camera angle, image overlap, and time 

of day will all influence the type, quality, and end-use of the imagery. These factors are especially important 

when planning for Structure from Motion (SfM) analyses to produce products such as orthomosaics, dense 

clouds, digital elevation models (DEMs), and 3D models (Whitehead and Hugenholtz, 2014).  

Flight altitude is a major determining factor of pixel resolution, where higher altitude flights will generate 

lower pixel ground sample distance (GSD), but cover a larger spatial extent. Altitude can also affect parallax 

variation, thereby influencing how objects are observed and measured (Johansen et al., 2018, Tu et al., 

2018, Remondino et al., 2014). Altitude will also change the functional amount of overlap between images, 

which has been shown to decrease point cloud densities (i.e., resolution; Tu et al., 2020). Forward overlap 

is demonstrated to have the greatest effect on photo alignment and point cloud density, with a recommended 

threshold of 80% (Dandois et al., 2015; Tu et al., 2020). Similarly, side overlap has a suggested range of 

70-80% to minimize negative effects on SfM products (Dandois et al., 2015; Tu et al., 2020).  

In addition to ensuring sufficient overlap for adequate tie point and point cloud densities, flight pattern and 

camera angle can also significantly impact the resolution and accuracy of SfM products. A number of 

studies suggest that overlapping flight patterns may increase accuracy of SfM products (Figure 1; Gerke et 

al., 2016; Assmann et al., 2018). Similarly, capturing multiple camera angles (e.g., nadir, oblique, high 

angle, low angle) can improve imagery products, particularly in complex environments such as riverbanks 

and forests (Gerke et al., 2016; Rusnák et al., 2018; Manfreda et al., 2019; Martinez et al., 2020). However, 

care must be taken as the radiometric qualities may change as the drone changes heading, leading to varying 

illumination levels or “hot spots” (Stow et al., 2014; Tu et al., 2018). 

 



Figure 1: (a) Lawn-mower flight pattern (black) with perpendicular flight lines (pink) to achieve higher overlap and 

reduce BRDF effects when overlap is limited by aircraft or sensor triggering speed, and (b) Lawn-mover pattern flight 

path (black) with additional diagonal flight lines (blue) that may aid reconstruction. From Assmann et al., 2018. 

Flight speed can also affect illumination and image quality, where faster speeds may increase motion blur 

(Roth et al., 2018), which is intrinsically linked to camera shutter type and speed. Increased flight velocities 

may also increase camera pitch angle for rotary wing aircraft lacking gimbal control (Tu et al., 2020). 

Though there is a tradeoff in resolution at very fast flight speeds, increased velocity has the benefit of 

increasing spatial coverage while maintaining similar environmental conditions. For example, solar 

elevation affects illumination and, thus, reflectance, which is critical for a number of analyses such as 

vegetative health and soil composition (Lu et al., 2017). Spectral information can also affect the success of 

machine learning processing, and extreme variations may pose a significant challenge for analyses and 

interpretation.  

(iv) Georeferencing 

Understanding the tradeoffs between efficiency and accuracy is essential to identifying the appropriate 

solution for your given application. Utilizing the internal GPS of the drone to geolocate initial image center 

points and processing via standard photogrammetry/stitching software such as Agisoft Metashape or Drone 

Deploy results in the most time efficient data collection, but the lowest spatial accuracy (errors ranging 

from  0.2-0.5m mean absolute error [Unger et al. 2018]). Studies have also shown that leveraging the 

internal GPS results in decreasing accuracy as you move from the center of the image outward to the 

margins.  

Following utilization of the internal GPS solely, the next most efficient approach is leveraging a post-

processing or PPK correction with spatial accuracies typically resulting in the sub-decimeter range (Hill 

2018). Although PPK can be achieved via CORS base-stations, it is recommended that the base be within 

100 miles of the survey site. To achieve the highest ppk accuracy, it is suggested to purchase a stand-alone 

base station to collect static measurements used in the post-processing of the imagery location information. 

This type of approach can be quite efficient, and only requires additional time post-processing as opposed 

to additional field time.  

The most time consuming, but most accurate and precise method of drone surveying is to utilize ground 

control targets manually laid out across the survey site. Those ground control points/targets are then 

surveyed with a high resolution rtk gnss rover and base station for sub centimeter accuracy. The surveyed 

targets can then be leveraged to georeference the drone survey through common post-processing softwares, 

resulting in the most accurate drone survey possible, with mean absolute errors for elevation roughly 

~0.04m (Cao et al. 2017). Cao et al. (2017) also illustrates how accuracy can be improved through a variety 

or combination of approaches including higher resolution GNSS receivers that only require satellite 

connectivity for sub ~0.3m accuracy.  

(v) Post Processing Automation 

A machine learning pipeline is under development, which uses PPK GPS imagery as an input data stream, 

to extract meaningful features for the automated generation of ecohydrological and aquatic habitat modeling 

metrics.  Outcomes and elements of this process include: 1) automated classification of relevant 

topographical features from high resolution multispectral aerial imagery, 2) Computing feature scope (areas 

and proportions) in true dimensions (as opposed to pixels), 3) generation of the flow-axis (centerline profile) 

and waterway length, 4) computing wetted channel width, sinuosity, floodplain characteristics and cover at 

variable scales, 5) channel-unit distribution, and 6) identify large woody debris (LWD). 



Several variants of machine learning algorithms were developed and tested. Among these were a super-

pixel classifier, Mask Regional Convolutional Neural Networks (Mask-rCNN), random forests, as well as 

more traditional morphological methods and parametric transforms. Additionally, drone-based geo-

referenced aerial imagery was projected and transformed to geographic coordinate reference systems in 

order to maintain measurements at real scales. All tools were developed with open source compatible 

freeware and/or open license (e.g. MIT, Apache) packages. 

Due to our previously demonstrated successes and expert knowledge in object detection and classification, 

we first explored a Mask-rCNN for feature identification and extraction. The Mask-rCNN was found to 

produce successful results with high accuracy in classifying and delineating water channels. Water channel 

segments were consistently classified above 90% (from softmax output), but the Mask-rCNN was plagued 

with issues of overfitting the data in the presence of LWD (high type II errors) without an adequate 

abundance of data. Despite this shortcoming, Mask-rCNN remains a viable and promising alternative that 

requires more training time, both in terms of number of epochs (training time was 3 hours on an RTX 3500 

12MB GPU) as well as time in labeling of truth data. This type of approach must also be supported not only 

by large volumes of data, but also data from a large variety of regions and geographies to avoid overfitting 

when trying to apply to a new spatial domain. For this reason, we began exploration of other classification 

types found within the literature.  

Traditional morphological methods (intensity gradients, etc.) and parametric transforms also yielded 

adequate results.  Segmentation based on intensity gradients, followed by parametric line transforms 

produced 94% accuracy in identifying LWD count in preliminary trials. It is anticipated that further 

processing (non-linear filtering, etc.) will be necessary in the presence of any dirt roads, to avoid 

misclassification of tire tacks as LWD (type I errors). Though not an overly complicated task, this (along 

with the ever menacing thresholds that are associated with gradients) was cause enough to turn to the 

exploration of further methodologies. 

Finally, a super-pixel based classifier was explored which showed promising results, yielding preliminary 

accuracies for the water, roads and trees classes at above 96%, while that of low vegetation and dirt roads 

was 89% and 82% respectively.  

Once progress toward aerial image classification reached favorable levels of accuracy and confidence, 

feature extraction for deriving aquatic habit metrics was explored.  One primary metric from which many 

others can be fundamentally derived was approached first; this is the flow-axis (or center line) profile. 

Employing techniques used in signal and image processing (specifically, vector quantization), an 

optimization algorithm, constrained to the inequality constraint defined by centroidal boundaries, offers a 

method to identify the bisecting dividing line which between two irregularly shaped edges.  This approach 

readily affords an accurate delineation of the water channel flow-axis. Once the flow axis is determined, it 

is a simple matter to determine the Full-bank channel width, sinuosity and length of various reaches.     

Our initial application of various classification and detection algorithms have yielded promising results in 

challenging environments. Imagery utilized in the testing of post-processing techniques was collected 

during previous projects; spatial domain covering the upper Secesh River and its tributaries and the Lemhi 

River and its tributaries. In order to further development and training of models, it is necessary to foster 

data sharing and collaboration across the entire Columbia Watershed. This would require regional 

coordination and cooperation as well as a centralized repository and collaboration space for invested parties. 

Future development should focus not only on drone imagery utilization, but also maximization of satellite 

imagery and satellite derived products for fisheries conservation and watershed management. 

 



 

DISCUSSION 

Understanding the products, resolution, and precision/accuracy necessary to meet your project needs is 

critical when choosing a UAV + sensor package. For example, hydrodynamic modelling of wadeable 

streams requires centimeter level accuracy (Tonina et al. 2019), but canopy and riparian density mapping 

may only require sub meter accuracy (Pal et al. 2018), illustrating how spatial accuracy and resolution could 

determine the necessary payload to fulfill the requirements. Furthermore, the tradeoff between effort and 

product resolution is also a key consideration when planning future UAV sampling.   

To further and more efficiently utilize UAVs across the Columbia Basin, several steps are recommended.  

The interconnectedness of the variables described in this review all point to the necessity of better metadata 

sharing and storage. A central repository/database and collaboration space may be necessary to capture the 

rapidly growing and changing drone and UAV technologies. This type of initiative could be modelled after 

several already developed satellite LiDAR consortiums. In addition, protocols and recommendations must 

continue to adapt to the changing technologies, but also maintain a level of consistency in data products to 

ensure compatibility across years. Through formal and informal collaboration with the Columbia River 

Iinter-Tribal Fish Commision (CRTFC) and the Washington Department of Fish and Wildlife (WDFW), 

the two protocols have been developed on separate tracks, with the hopes to work towards merging our 

initiatives in 2022.  
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CHAPTER 3. Evaluate Alternatives to Transfer Capacity Estimates from 

Quantile Random Forest Models to a Linear Stream Network 

 

INTRODUCTION 

The quantile random forest (QRF) capacity model we have developed uses paired fish abundance and 

detailed habitat data from selected sites around the Columbia River Basin to estimate the carrying capacity 

at the 200-500 meter reach scale, where such detailed habitat data is available. Initially, and to date, the 

sites where such data was collected were monitored by CHaMP (Columbia Habitat Monitoring Program). 

This aspect of the QRF model is useful for examining empirical fish/habitat relationships, determining what 

habitat factors may be limiting capacity at a particular location, and examining the improvement to capacity 

after rehabilitation actions. However, there is also a need to generate capacity estimates on larger spatial 

scales (e.g. tributary, watershed, population, etc.). 

To date, inference to areas without detailed habitat data and at larger spatial scales has relied on master 

sample points and attributes associated with them (Larsen et al. 2016). This method was developed because 

that dataset was available at the time, and covered the entire Columbia River Basin. However, each master 

sample point does not actually represent a stretch of river, rather they are a single location 

(latitude/longitude coordinates) that is meant to be representative of about a kilometer of stream. Some 

points are closer together than a kilometer though, due to tributary junctions or other issues. Because of 

how they’re constructed and what they actually represent, the interpretation of capacity estimates at master 

sample points is slightly more complicated than we desire. 

Recently, a group of NOAA researchers has developed a line layer that breaks down the Columbia River 

Basin into 200 meter reaches, with various attributes assigned to each reach. It covers the same area as the 

master sample point dataset, but provides better interpretation and visualization properties than the master 

sample point layer. In this document, we present details about how we have used both the master sample 

points and the line network as extrapolation tools, and include some comparisons of the results between 

them. 

METHODS 

We examined results from a total of six different QRF models, three each for spring/summer Chinook and 

steelhead. These consisted of a model for redds, and two versions of a QRF model for summer juveniles. 

The first of these used what we considered the best choice of metrics from the entire CHaMP dataset. The 

second focused on metrics that are collected by DASH (Drone Assisted Stream Habitat protocol) that can 

be calculated from CHaMP data as well. This version allows direct QRF estimates to be made for areas 

sampled by DASH, since the CHaMP protocol is no longer in use. 

Master Sample Points 

The master sample points were generated in the design phase of CHaMP. These 551,046 sites were selected 

from the NHD Plus 1:100,000 stream layer covering WA, OR and ID at an average density of one site per 

kilometer (Larsen et al. 2016). Each CHaMP site where direct QRF capacity estimates were made 

corresponds to one of these master sample points, identified and selected using a generalized randomized 

tessellation stratification (GRTS) design (Olsen et al. 2012, Stevens Jr and Olsen 2004). CHaMP generated 

a number of attributes for each master sample point, referred to here as globally available attributes (GAAs) 



because they are associated with every master sample point across all watersheds. We chose 11 to include 

in the extrapolation model (Table 3). 

Table 3: Attributes available at every master sample point, used as covariates in extrapolation model. 

ShortName Name Description 

TRange Temperature Range Mean Temperature Range from PRISM data 

Elev_M Elevation Elevation of site as extracted from the 10 m 
Digital Elevation Model 

CHaMPsheds CHaMP Watershed CHaMP Watershed site falls in if appropriate 

NatPrin1 Natural Class PCA 1 Natural Classification PCA 1 Score 

DistPrin1 Disturbance Class PCA 1 Disturbance Classification PCA 1 Score 

SrtCumDrn Drainage Area (sqrt) Square root of the cumulative drainage 

StrmPwr Stream Power Stream Power 

Slp_NHD_v1 Slope Slope of Flowline (m/m) from the NHD Plus file 

Channel_Type Channel Type Geomorphic Channel Type from Beechie Layer 

WIDE_BF Bankfull Width - modeled Modeled bankfull width of stream, (m) 

S2_02_11 Average August 
Temperature 

NorWeST 10 year average August mean stream 
temperatures for 2002-2011 

 

The original extrapolation model used the log of capacity estimates at each CHaMP site (fish / m) as the 

response, and selected GAAs as covariates. The model was fit using the svyglm function in the survey 

(Lumley 2004) package with R software (R Core Team 2019), accounting for the various survey design 

weights within each CHaMP watershed. We then used that model to predict capacity at every master sample 

point that was not a CHaMP site. In other words, we fit a linear regression to establish associations between 

estimated habitat capacity, from QRF, at CHaMP sites and globally available attributes from those sites and 

then used those associations at locations where CHaMP habitat data was not available to predict capacity 

at those master sample points. 

The design weights were based on the particular stratification used in each CHaMP watershed to select 

monitoring sites. The most common stratification used three categories of valley segment type (source, 

transport and depositional) and selected a fixed number of sites from each strata. Because the strata are not 

equally distributed across the watershed, the design weights account for that unequal distribution. There are 

potential consequences to ignoring those weights when analyzing data from these sites (Nahorniak et al. 

2015). 



To roll up capacity estimates to larger spatial scales, the average predicted capacity of master sample points 

along a stream was multiplied by the length of that stream, and then combinations of streams could be 

added together to generate overall capacity estimates for a watershed. 

Line Network 

We adapted this method to using a stream layer created by Morgan Bond and Tyler Nodine at the Northwest 

Fisheries Science Center. This layer consisted of a line file divided into 200m reaches with various attributes 

attached to each reach. The line file is based on the National Hydrography Dataset High Resolution 

(NHDPlus HR) dataset, which has a higher resolution, 1:24,000, compared to the older layer that the master 

sample points were chosen from. 

Table 4: Attributes available at every 200m reach, used as covariates in extrapolation model. 

ShortName Description 

slope Stream gradient 

rel_slope Relative slope. Reach slope minus upstream slope 

Sinuosity Reach sinuosity. 1=Straight, 1< sinuous 

regime Flow regime. 1= mixed, 2=snow dominated, 3=rain dominated. 

alp_accum Number of upstream cells in alpine terrain 

fines_accu Number of upstream cells in fine grain lithologies 

flow_accum Number of upstream DEM cells flowing into reach 

grav_accum Number of upstream cells in gravel producing lithologies 

p_accum Number of upstream cells weighted by average annual precipitation. 

fp_cur Current unmodified floodplain width 

S2_02_11 NorWeST 10 year average August mean stream temperatures for 2002-2011 

DistPrin1 Disturbance Classification PCA 1 Score 

NatPrin1 Natural Classification PCA 1 Score 

NatPrin2 Natural Classification PCA 2 Score 

 

We determined which reach was closest to each CHaMP site, and used the predicted QRF capacity density 

of those CHaMP reaches as the response with the attributes attached to each 200m reach as covariates 

(Table 4). We also took this opportunity to move to a random forest modeling framework. This 

accommodates possible non-linear or saturating effects of some of these covariates on capacity predictions, 

and prevents the extrapolation model from predicting capacity values well above or well below the range 

of predictions at CHaMP sites. 



Range of Covariates 

We examined the range of the covariates used in each method, for wadeable streams, and compared it to 

the range of values found at CHaMP sites or reaches. This exercise provides some context about how 

representative the suite of CHaMP sites are compared to the rest of the Columbia River Basin. These figures 

are found at the end of this document. 

RESULTS 

We computed the total capacity of each species in each population using both methods, for summer 

juveniles (using both CHaMP and DASH habitat metrics) and redds, and compared them. The correlations 

between the two estimates are shown in Table 5. 

Table 5: Correlation coefficient between capacity estimates at the population scale using each method. 

Species Model r 

Chinook CHaMP 0.934 

Chinook DASH 0.903 

Chinook Redds 0.908 

Steelhead CHaMP 0.866 

Steelhead DASH 0.990 

Steelhead Redds 0.986 

 

We plotted one estimate against the other in Figure 2, and showed the relative difference in Figure 3. 



 

Figure 2: Capacity estimates for each population, calculated with the master sample points method on the x-axis and 

the line network on the y-axis. 



 

Figure 3: Relative difference between the capacity estimates for each population, using the master sample points 

method as the reference. 

Maps 

This shows the difference in how the results can be visualized. 



 

Figure 4: Plots of Chinook parr capacity in the Lemhi, using the master sample points method (A) and the 200 m 

reach method (B). 

 

 

Figure 5: Plots of Chinook parr capacity in an approximately 8km stretch of the Lemhi, using the master sample 

points method (A) and the 200 m reach method (B). The NHDPlus layer has been added in (A). 

DISCUSSION 



Extrapolations of QRF predictions are useful for higher-level spatial analyses or comparisons, such as at 

the watershed level. Examining predictions at individual master sample points or 200m reaches should be 

discouraged. For that scale, detailed habitat data should be collected, by using a protocol like DASH, and 

direct estimates of capacity can be made using a QRF model. On the other hand, extrapolation summaries 

of capacity at the watershed scale, for various species and life-stages, can be useful in broad prioritization 

discussions, to determine what life-stages and watersheds to target for rehabilitation. 

For most of the GAAs, the range of values represented at CHaMP sites or reaches overlapped with the 

range of values in other places, with a few exceptions. The most notable is modeled precipitation (Precip) 

in the Clearwater basin (Figure 6). We did not use Precip as a covariate in the master sample points 

extrapolation model, but it does indicate that something about the conditions in the Clearwater may be 

different from other places with the interior Columbia River Basin, and therefore extrapolations to that area 

should be scrutinized carefully. The 2nd PCA of the natural classification (NatPrin2) also shows some 

deviation from the CHaMP dataset in the Willamette, Lower Columbia and Salmon watersheds. It could be 

worth investigating what part of that PCA (or combination of parts) are driving that deviation. 

For both species, across all three QRF models, the two extrapolation models resulted in estimates of total 

capacity at the population scale that are very highly correlated (Table 5). The linear network estimates were 

often greater than the master sample point estimates, to a greater or lesser degree, but not always (Figure 

2). 

Changing the modeling framework from linear regression to a random forest has several benefits. Primarily, 

it provides a method to constrain extrapolation predictions naturally, even when the extrapolation covariates 

are beyond the range found at CHaMP sites. In addition, random forests accommodate potential non-linear 

associations between capacity predictions and GAAs while handling correlations among GAAs. The sample 

size of CHaMP sites with QRF predictions of capacity is sufficient to fit a random forest model, so we have 

no concerns about the “data-hungry” nature of this framework for this situation. 

Although the master sample point method has been used for several years, there is no reason to believe 

estimates from that method are inherently superior to using a line network, so even in the cases when the 

two models result in different estimates of capacity, it is difficult to say which is “better”. On the other 

hand, there are several reasons to support using the line network method, apart from the actual results, 

primarily based on the ease of interpretation. Extrapolation to a line network involves capacity predictions 

at actual 200 m reaches along a stream network, while the master sample point method provides estimates 

at instantaneous “points” on the landscape. The summation of capacity to larger spatial scales is more 

straightforward when using a line network, and the maps that can be created are easier to interpret (Figure 

4). 

Therefore, we conclude that the extrapolation to a linear network method presented here is superior to the 

master sample point method, and should be adopted moving forward for examining QRF outputs at large 

spatial scales. 
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APPENDIX A: Covariate Range Figures 

 

Figure 6: Boxplots of GAA values at CHaMP sites and non-CHaMP master sample points. Horizontal lines represent 

range of values at CHaMP sites. 



 

Figure 7: Boxplots of GAA values at CHaMP sites and non-CHaMP master sample points, colored by HUC6. 

Horizontal lines represent range of values at CHaMP sites (dashed) and the 25th and 75th quantiles of the CHamP 

sites (solid). 



 

Figure 8: Boxplots of GAA values at CHaMP reaches and non-CHaMP 200 m reaches. Horizontal lines represent 

range of values at CHaMP sites. 



 

Figure 9: Boxplots of GAA values at CHaMP reaches and non-CHaMP 200 m reaches, colored by HUC6. Horizontal 

lines represent range of values at CHaMP sites (dashed) and the 25th and 75th quantiles of the CHamP sites (solid).  



CHAPTER 4. Improve Flexibility and End-User Support for the Dam Adult 

Branch Occupancy Model (DABOM) 

 

INTRODUCTION 

The Dam Adult Branch Occupancy Model (DABOM) was initially developed as a proof-of-concept model 

to generate age and sex structured escapement of wild spring/summer Chinook and steelhead above Lower 

Granite Dam. Briefly, the methods consist of PIT tagging a representative sample of the returning fish, and 

using the subsequent detections of those tags at various sites upstream (or possibly downstream) of the 

starting location to estimate escapement or abundance past each detection site. The DABOM model 

estimates transition (or movement) probabilities past various detection sites while accounting for imperfect 

detection at those sites, essentially a multi-state variation of a spatial Cormack-Jolly-Seber model. The 

DABOM package implements this kind of model in a Bayesian framework. Further mathematical details 

of the model can be found in Waterhouse et al. 2020. 

In recent years, the use of DABOM has expanded, and there are now several versions implemented in 

various locations around the Columbia River Basin, including: 

• Wild spring/summer Chinook past Lower Granite Dam 

• Wild steelhead past Lower Granite Dam 

• Wild & hatchery steelhead past Priest Rapids Dam 

• Wild & hatchery spring Chinook past Tumwater Dam 

• Wild steelhead past Prosser Dam 

• Wild & hatchery spring Chinook past Priest Rapids Dam 

• Hatchery Coho past Priest Rapids Dam 

 

As each of these versions has been developed, the initial code to make the model run has often been 

modified or added to as necessary in order to accommodate new users’ needs. This has resulted in some 

redundant coding, multiple functions to accomplish the same purpose and unwieldy code that is difficult to 

update. On the other hand, new PIT tag detection sites are being added each year, sometimes with the 

express purpose of being incorporated into DABOM.  

With multiple versions (meaning different release points and detection sites in each) exisiting, and the 

potential need to update each of them each year, our goal in this work element was to streamline the 

underlying code as much as possible and provide better instructions for running and updating DABOM 

models. To accomplish this, we have updated two different but related R software packages, named 

PITcleanr and DABOM. PITcleanr was developed to take observations from PTAGIS and transform them 

into inputs for DABOM, while the DABOM package contained the functions to run the DABOM model.  

METHODS 

PITcleanr 

PITcleanr was originally written to take data from the Lower Granite trap database, and detections from 

PTAGIS and merge them into the format needed by the original DABOM model. In our efforts to update 

PITcleanr, we strove to make it useful for a broad range of potential analyses that utilize PIT tag data, not 

just DABOM.  



 

DABOM 

We rewrote many of the functions in the DABOM package to make them more generic, so that one function 

would take the place of 4 related but slightly different functions (each focused on the DABOM version for 

a particular release site). The types of functions we consolidated include: 

• Write the JAGS model 

• Setting initial values 

• Creating inputs for JAGS 

• Setting the number of branches at each branching node 

• Determining which parameters to track 

 

We aimed to make these work generically based on a user-defined configuration file that maps detections 

from specific antennas to “nodes” in the DABOM model, a parent-child table that defines which sites are 

upstream of other sites and a processed detection history from PITcleanr. 

RESULTS 

PITcleanr 

We released PITcleanr 2.0.0 on GitHub. Instructions for installation, as well as three helpful vignettes to 

help users navigate the functionality of PITcleanr, can be found on this website: 

https://biomarkabs.github.io/PITcleanr/.   

DABOM 

We released DABOM 2.0.0 on GitHub. Instructions for installation, as well as a helpful vignette to help 

users navigate the functionality of DABOM, can be found on this website: 

https://biomarkabs.github.io/DABOM/.   

DISCUSSION 

These updates to the PITcleanr and DABOM software packages have improved them in many ways. 

PITcleanr has become more useful for all kinds of PIT-tag based analyses, including juvenile survival 

through the hydro-system, smolt-to-adult-return estimates, many varieties of mark-recapture type analyses 

for both anadromous and resident species, as well as preparing adult salmonid data for DABOM. 

Meanwhile, the DABOM software has become much more streamlined, able to be deployed in new 

watersheds, as well as making it easier to incorporate new sites into existing models in the future.  

We developed extensive documentation for both packages to make them more accessible to more users and 

promote their utility within the Columbia River Basin. Our hope was by making many of the help pages 

and software vignettes available on a website for each package, even people who are not necessarily well-

versed in R software could read more about their functionality and learn about their capabilities.  
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